9306 5J0HNSBO9

BYRON JOHNSON
356 LAGUNA TERR
STMY VALLEY, CA 93065

SUBMITTING ITEMS FOR PUBLICATION

LABEL everything please, your name, address and the date;
tapes should also include the program name, language and
system.

SUBSCRIPTIONS

U. S. Subscriptions
O $8/yr. (6 issues)
O $15/2 yrs. (12 issues)

E MAY -JUNE 1978

O Retaining subscription @ $25 STAFF MICRO STUFF
TYPE text if at all possible, double-spaced, on 8% x 11 inch ($17 tax deductible) EDITOR 7 HEATH'S H-8
white paper, [0 Sustaining subscription @ $100+ Phyllis Cole 4 ABBLE: N
(B2 dmeuctibtc) ASSISTANT EDITOR
DRAWINGS should be as clear and neat as possible in black 4 . Tom Williams 15 VIDEO BRAIN
ink on white paper, Figreign pulincaMail ART DIRECTOR 40 SPOT: The Society of PET Owners and Trainers
CJ add $4/yr. for Canada Meredith Ittner
LISTINGS are hard to reproduce clearly, so please note: [0 add $5/yr. elsewhere PRODUCTION 54 TRS-80 TALK
e Use a new ribbon on plain white paper when making a Donna Lee Wood
listing; we prefer roll paper or fan-fold paper. Foreign AIRMAIL ARTISTS ARTICLES
® Send copies of one or more RUNs of your program, to g agg :?::‘;l‘ fl;f anada Maria Kent 16 CASINO: A Small System Simulator
verify that it runs and to provide a sense of how things a yr. for Europe Ann Miva >] s
worf: — 'and to motivate n‘:ore of Us: to. read: the cods. O add $14/yr. elsewhere Judith \:.'asserman Bgrge Christensen constructs a simulation of a roulette game
RUNs should illustrate the main purpose and operation of Payment must be in U.S. dollars TYPISTS 27 SKETCHCODE
your program as clearly as possible. Bells, whistles and drawn on a U.S. bank. Barbara Rymsza Todd Voros’ discusses his metaprogramming technique
special features should just be described in the documen- Sara Werry 34 TINY LANGUAGE TALK
tation unless they‘re particularly relevant. These back issues are available at $1.50 each: BOOKSTORE Sam Hills shares his ideas
® Make sure your code is well documented — use a separate Vol 5, No 6 Dan Rosset
sheet of paper. Refer to portions of code by line number or Vol 6, Nos 1, 2,3,4,5 PROMOTION 48 IN DEFENSE OF THE COMPUTER ESTABLISHMENT
label or address please, not by page number. When writing Dwight McCabe Warner Mach takes issue with Jaques Vallee
documentation, keep in mind that readers will include Andrea Nasher 59 APL WANTS YOuU!
beginners and people who may be relatively inexperienced Foreign Distributors of People’s Computers CIRCULATION Mokiiral Chedin 153 Wiie balidvar
with the language you're using. Helpful documentation/ Bill Bruneau
annotation can make your code useful to more people. Vincent Coen Home Computer Club BULK SALES

Documentation should discuss just which cases are covered

LP Enterprises 1070-57 Yamaguchi

Christine Botelho

OTHER STUFF

and which aren’t, 313 Kingston Road Tokorozawa, Saitama, DRAGON EMERITUS 11 'ST*R W*RS
* |f you send us a program to publish, we reserve the right to ford 1G1 1PJ JAPAN Bob Albrecht Mark Pelczarski’s game is.a challenge
annotate it (don’t worry, we won't publish it if we don’t Essex, UK ine AR s
like it). Kougakusha Publ. Co., Ltd RETAINING SUBSCRIBERS .
® Last but not least, please try to limit the width of your Rudi Hoess Haneda Biru 403, 5-1 As seen by Jef Raskin
listings: 50-60 characters is ideal. Narrow widths mean less Electronic Concepts PTY Ltd 2-Chome, Yoyogi David R. Dick 26 COMPUTERS AND THE HANDICAPPED
reduction, better readability and better use of space. Ground Floor Cambridge House Shibuya-Ku, Tokyo 151 Mark Elgin A photo essay
52-58 Clarence St JAPAN John B. Fried
LETTERS are always welcome; we assume it's OK to publish Sydney NSW 2000 Socitt Guthary, Gomputor Recrektiont 45 ;INY B??CIﬁ(JACK .
them unless you ask us not to. Upon request we will withhold Computer Age Co., Ltd W. A. Kelley powerful Tiny BASIC game from Milan Chepko
your name from a published letter, but we will not publish ASCI| Publishing Kasumigaseki Building John C. Lilly 51 BASIC5 STRINGS
correspondence sent to us anonymously. We reserve the right 3056 HI TORIO 3-2-5 Kasumigaseki Frank Otsuka Fr Thomas McGahee's added strings to his SOL 20
to edit letters for purposes of clarity and brevity. 5-6-7 Minami Aoyama Chiyoda-Ku, Tokyo 100 Bernice Pantell 57 DRAGONSMOKE
Minato-Ku, Tokyo 107 JAPAN Larry Press Dragon Emeritus Bob Albrech id for f
JAPAN Shelter Institute - PONEIE IR DG recht provides sources for fantasy games

Cover photo courtesy of Visualscope.

SUSTAINING SUBSCRIBERS

Algorithmics Inc, Bruce Cichowlas

REGULAR STUFF

EDUCATION SOFTWARE: A Call for Distributors
From Phyllis Cole :

Don L. Behm
% 3 . - ' E * R],B E, Menlo P rk, CA 94025, BYTE Publications, Carl He!mers, 4 EDITOR'S COMMENTS & LETTE RS
People’s Computers is published bimonthly by People’s Computer Company, 1263 El Camino Real, Box E, Menlo Pa | Virginia Peschke, Manfred Peschke 32 FORTRAN MAN

People’s Computer Company is a tax-exempt, independent, non-profit corporation, and donations are tax-deductible.

Second class postage paid at Menlo Park, California, antlj“ adc;l iti;n?(l rg\t’r_z points. f ;?ITI 6’;3;‘&:";&::5320"’" 43 REVIEWS
Copyright ©i1978 by Racpis s Eamipassr Company. Menlo Firk, California Dick Heiser, The Computer Store 62 ANNOUNCEMENTS
2 PEOPLE'S COMPUTERS MAY-JUNE

EDITOR’'S NOTES

This will be my last issue as editor.
Future plans are not yet firm but
they’ll definitely include home
computers. (No, | won't be working
for Commodore. . .) Do not despair
PET fans—SPOT will continue to
appear in these pages.

People’s Computers” new editor will
be Bob Kahn, a long-time friend of
People’s Computer Company and,
until taking on the editorship, a
member of PCC’s board of direc-
tors. When a junior in high school,
back in 1962, Bob was first intro-
duced to computers by none other
than our Dragon Emeritus. He
worked his way through college as a
programmer and data analyst and
spent a couple of years as a com-
puter education consultant here in
the San Francisco Bay Area. For
the past 6 years, Bob has been the
Director of the Computer Education
Project at the University of Califor-
nia’s Lawrence Hall of Science in
Berkeley. At the same time, he has
been working toward a Ph D in
education at Berkeley. In addition
to science museurns and computers,
Bob is very fond of kids, toasted
almond ice cream, High Speed

Ektachrome, and Renaissance
dance music—not to mention
The Dragons of Eden.

I'm looking forward to the fresh
perspective Bob Kahn will bring
People’s Computers—. it's sure to be
enjoyable.

Phyllis Cole

4 PEOPLE’'S COMPUTERS

LETTERS

AC

I would like to say a few things about
Pascal and Tiny Languages. All the
good things said about Pascal are true.
I have used a very powerful version
of BASIC (BASIC-PLUS on the PDP-11)
which could well be the best BASIC
sold, but it is not as good as Pascal.
However, Pascal is not usually inter-
active, and interactive languages have a
lot of advantages over noninteractive
ones.

Compared to other very powerful
languages Pascal is small, but it is not
tiny. I am helping to design and build
a Pascal machine using the Z-80 (in
contrast to putting Pascal on a Z-80), and
find that according to our designs we can
probably run a real-time disk operating
system and Pascal compiler in 32K bytes.
This is not tiny. Nevertheless we feel the
power of Pascal is worth it since memory
is not now expensive and will soon be
even cheaper.

Pascal is very well designed. I wrote a
compiler for Pascal before I ever wrote
a program in Pascal and was surprised
at how simple it was. I read books on
parsing and compiler writing to prepare
myself and then used a very primitive
parsing algorithm, since the language is
in a sense primitive. If a Tiny Language
is similarly well designed then it can be
powerful yet simple, but Pascal was never
meant to be tiny, only small.

Pascal is as large as it is because it has
many different data types and state-
ments. A Tiny Language that has only
one elementary data type, strings, as well
as structured types, would be smaller.
A simpler set of statements could still
be used, such as assignment, a combina-
tion of the IF and CASE statements,
and a looping statement. The simpler
syntax would also make it easier to make
the Tiny Language interactive yet still
have free form.

Many people do not like to declare
variables, but this is the essence of good
programming style. BASIC’s weakest
feature is not its lack of structured
control statements but its poor sub-
routine handling and lack of local

variables. All variables should be declared,
though defaults could be provided for
beginning and lazy programmers.

An idea 1 have had for some time is to
treat floating point numbers as fractions
rather than as decimals. This would be
very well suited to the string format
and would also be easy for kids, as well
as eliminating roundoff error.

Structured data types are even more
important than structured control state-
ments in my opinion, since powerful

" subroutine capabilities can reduce the

need for powerful control statements.
One of the problems with Pascal is that
all array sizes are fixed at compile time.
Dynamic arrays would be very nice.
Records are also very useful in making
programs easier to understand. Possibly
all variables (simple, array, record and
pointer), could be looked on as special
cases of one variable type. Each variable
could have some information indicating
its size and pointers to its component
strings. Since strings are of variable size
there is really no difference from the
implementer’s point of view between
a record and an array: both consist of a
heading describing the variable and a
string of pointers to the component
strings. Referencing a field from a record
would be exactly the same as referencing
a component of an array.

Perhaps we are all guilty of cultural near-
sightedness. All languages mentioned here
are members of the Fortran/Algol family,
which is what we have all been trained
to program in. Rumor has it that some
highly successful children’s languages,
such as Smalltalk, are entirely different.
I wouldn’t know, since no one has yet
answered my requests for names of
publications or ordering information.
Since you seem to be in the know, how
about reprinting relevant information?
It would be a shame to develop a
language that was outdated before it
was even implemented.

My copies of Pascal News have just
arrived. Anyone interested in Pascal
should subscribe by sending $4.00 to
Pascal User’s Group, c¢/o Andy Mickel,

University Computer Center: 227 EX,
208 SE Union Street, University of
Minnesota, Minneapolis, MN 55455. One
interesting bit of news was the announce-
ment of Pascal implementations for
Microprocessors.

The University of California at San Diego
has a Pascal system designed for Computer
Aided Instruction written for the LSI-11,
the 8080, the Z-80, and plan on having
it run on the 6800 and the 6502, also.
It requires at least 48K of memory,
maybe more, and a certain number of
floppy disks. The 8080 and Z-80 soft-
ware uses the I/O drivers from CP/M,
so if your system runs CP/M and has
enough memory it should run UCSD
Pascal. For more information write
Pascal Group, Institute for Information
Systems, UCSD Mailcode C-021,
La Jolla, CA 92093.

A Pascal system for the 6800 was
mentioned that requires 32K of memory
and some high speed mass storage device
such as a floppy disk or tape. The cost
is around $100 and ordering information
can be had from Computer Depot, 3515
West 70th Street, Minneapolis, MN 55435.

%
Both of the above systems come with
complete source listings as well as other
documentation. The UCSD system has a
BASIC interpreter written in Pascal,

CAl programs, text editors, and graphics
capability.

The usual way to implement Pascal is to
invent a hypothetical Pascal Machine
which the compiler compiles. A small
interpreter is written in the machine
language of the computer to interpret
the code of the Pascal Machine. To move
the compiler to another machine it is
only necessary to rewrite the interpreter,
which is usually 4K to 8K. Thus most
Pascal systems are very portable. The
most popular series of compilers is the
one started by Niklaus Wirth, called
P1, P2, P3 and P4. The 6800 system is
implemented using a variant of P2. UCSD
seems to have invented theirs from
scratch, although 1 could be wrong.
I am using Per Brinck Hansen’s Sequential
Pascal/Concurrent Pascal pair of
compilers because I am interested in real-

time applications. It is possible for
anyone to use one of the standard
compilers to implement their own system
in a few months. The best way to start
is to subscribe to Pascal News.

Ralph Johnson
Galesburg, IL

In our Nov-Dec issue (Vol 6 No 3) we
published references to Smalltalk (Alan
Kay’s article in the Sept 1977 Scientific
American; Kay and Goldberg’s Small-
talk Instruction Manual from Xerox
PARC, Palo Alte, CA). Our Jan-Feb
issue (Vol 6 No 4) refers to Springer-
Verlag books on Pascal (Pascal User
Manual and Report by Jensen and Wirth;
Ken Bowles’ Introduction to Computer
Science). Bowles’ status report has been
published in the March, 1978 issue of
Dr. Dobb’s Journal (Vol 3 No 3). Thanks
for the other sources.

ACACACACACACACACADACACACACAD

I've met PASCAL recently and generally
agree with David Mundie that it is a much
better language than BASIC. However,
there are a few problems that should not
be ignored:

1. Character strings are not a basic vari-
able type—the best that can be done is
an array of individual characters. My
mental processes work more easily with
strings and substrings than with individual
characters: I'd rather check for ‘yes’ than
‘Y’ and ‘E’ and *S’.

2. Perhaps the problem is with the manual
rather than the language, but I'm not sure
exactly what can be read and written. I'm
under the impression that only single
characters can be read and written; appar-
ently an internal number formatter was
added as an afterthought (which does not
inspire confidence).

3. Semicolons are required between every
pair of statements—well almost every
pair. | predict that users will find the mis-
use of semicolons to be the most persis-
tant syntax problem. The only use I can
see for semicolons is for separating several
statements on the same line.

4. This may be nit-picking, but 1 don’t
consider the use of ;=" to be particularly
clear. In addition it is unnecessarily
clumsy to have to type two symbols for

the most common operation. It seems to
me that the use of a left-arrow for assign-
ment would be a great improvement. If
you can use an up-arrow in ‘INPUT?®
(whatever that means) you can just as
easily use a left arrow for assignment—
it can’t be that big a change.

5.Not only must statement labels be
numbers instead of names (ugh), but each
label must be declared in a LABEL state-
ment (YUK!). Considering that PASCAL
is nice enough to let me name my proce-
dure, I fail to understand why I can’t name
my statements or why I must declare my
labels before I use them. (For the fanatics
who wish to eliminate GOTOs from the
face of the earth, I refuse to make do
without them simply because they can
simplify an algorithm every once in a
while.) In spite of my complaints, I still
think PASCAL is a better language than
BASIC.

For David Mundie: Please tell us the dif-
ference between an ‘array’ and a ‘packed
array’; and can you give a simpler
example of a CASE statement? (Maybe
I'm slow, but its use in your sample pro-
gram was a bit shy of being crystalline).

For Bob Albrecht and Dennis Allison in
particular: Before going much further
with your tiny languages, I'd like to have
some idea of the age group you are con-
sidering. (Would a six year old have any
use for recursion or IF. . . THEN. . .
ELSE?)

A similar question for graphics: are they
to be controlled from the keyboard or
from a user written program? An alter-
native to keyboard control would be
special control knobs (e.g. for direction
control) or a joy stick or something like
that.

Occasionally I find myself deep in the
middle of a bunch of REPEAT...UNTIL,
WHILE, IF...THEN.. .ELSE, with a
GOTO EXIT the only thing to be done at
that point. Setting error flags and
working my way out of all that logic to
accomplish nothing more than that is
unnecessarily complicated. Does that
make me a poor programmer? That's my
problem, not the language designer’s.

Leigh Janes
East Lansing, MI

MAY-JUNE 5

Dennis Allison has some comments for
you, Leigh. ‘On point 4, I agree. ASCII
is, however, standard, and does not have
enough graphics. I prefer = = for the
assignment operator and = for compari-
sons. On point 5, the problem is histor-
ical, and comes from using labels in case
statements. Further, lexical scoping and a
desire to compute in one pass caused
the need for declarations.’

ACACACACACACACAOACACACACACAOD

I'm writing in direct reply to David Mun-
die’s article in your January issue, and to
comment indirectly on the spate of
letters from the structured programming
freaks. My feelings have gradually shifted
from generally sympathetic to thoroughly
annoyed, and I feel it’s time to raise a few
pertinent points.

If affordable general purpose computers
are to become a commonplace, they must
be purchased not by professional
programmers nor by hobbyists, but by
users with specialized non-trivial appli-
cations. The programs written by these
users will not be widely distributed, nor
will they be written for the love of intel-
lectual exercise. They will be written to
make one computer do something useful
as quickly as possible. If this group of
user-programmers fails to materialize, the
‘computer revolution’ is likely to
produce only idiot-proof, preprogram-
med appliance computers. I maintain that
the user-programmer’s first requirement
is for fast convenient program develop-
ment with a fully interactive editor-
interpreter, Those people helping to
shape the evolution of our programming
languages ought to pay more attention to:

A. The difference between compiled and
interpreted versions of any language.

B. The importance of the co-resident
text editor in the design of any inter-
preter. (Could it be that many of the
structured programming freaks are still
‘editing’ on keypunch machines?)

C. The degree to which any language is
machine dependent, and particularly
the influence of the ubiquitous tele-
type on the evolution of present inter-
preted languages.

Mr Mundie does not mention what sys-
tem he used for ‘BANBASIC’, but he
seems to be comparing a fairly powerful
compiler with a severely restricted BASIC
interpreter. Benchmarking the best of

6 PEOPLE'S COMPUTERS

Hewlett-Packard’s BASIC compilers
against the first of the homebrew
PASCAL interpreters would produce
similar lopsided results. I believe it’s time
to forget about languages and talk about
features.

Line numbers represent an economical
means of implementing a text editor.
Text editors will have to get much more
powerful before we can afford to dispose
of line numbers. Line numbers are also a
convenient means of flagging errors. In a
system without line numbers, the com-
puter issuing an error message ought to
display a sizable block of text and under-
line or highlight the offending section of
code. Finally, line numbers label sections
of code for an interpreter without requir-
ing the interpreter to maintain a separate
symbol table for entry points. Let me say
here that an operating system with fully
compatible interpreter and compiler, and
a very good text editor, would remove
most of my objections to the proposals
of the structured programming people. I
do not believe that such a system is feas-
ible with our current crop of hardware.

The ‘IF (condition) THEN (line number)’
statement is the one that seems to annoy
the S.P.F.s the most. This has been
almost universally replaced with the state-
ment, ‘IF (cond) (statement)/(statement)
[(statement)’. There is no particular
reason why this line cannot be extended
to as many characters as desired, and
listed back in the form,
IF (cond)
THEN:

statement

statement

statement
People should not waste time ‘pretfy-
printing” while a computer which can do
the same job more easily waits for them
to finish! An ‘ELSE’ clause could be
added in the same way, but should be
optional. ‘ELSE CONTINUE’ is still
the most common usage.

The unconditional ‘GOTO" is obviously
conditional in the construction above.
It is also used in direct execution to
test blocks of code without running an
entire program. Furthermore, many
existing editors do not permit renumbering
or resequencing in any fashion—without
the ‘GOTO’ many of us would spend
more time retyping than programming.
Best of all, it is cheap to implement.
Use it or don’t use it, but leave it in!

Multi-character variable names are a
useful feature, but costly to implement
in an interpreter. The business user will
want them, but the engineering user
might prefer faster lookup during run-
time. Also, it is simply not true that
meaningful variable names make a
program easier to read—to be readily
intelligible, an arithmetic expression
must be physically compact. Try writing
the general solution to a quadratic in
linear form with ‘meaningful” 8-character
names for all constants and variables! In
an arithmetic expression of any size, it
is good practice to use very short variable
names and describe those names in
comment lines. This issue more than any
other points up the difference beiween
‘business’ and ‘scientific’ languages. It will
be difficult to please both groups of users
with any single implementation of any
language. 1 feel that BASIC clearly falls
into the ‘scientific’ group of languages,
and that we badly need a language doing
for COBOL what BASIC did for
FORTRAN. In the meantime, let’s not
‘reform’ away BASIC’s value as an
easily implemented scientific language
for very small machines.

Finally, Mr. Mundie says that BASIC
encourages sloppy thinking. To this I
say, deleted! Any language. written for
mass distribution must be extremely
tolerant of sloppy thinking. The value of
acomputer isits ability to deal analytically
with huge masses of rigorously structured
data. The human mind is at its best
while drawing loose analogies or
metaphors, extracting patterns that
cannot be demonstrated algorithmically.
A computer should help people to order
their thoughts—not require them to.
The explicit declaration of all variables,
the inability to branch freely in and out
of procedural blocks, mandatory ‘ELSE’
and ‘ENDIF statements—all of these
features will encourage ‘logical thinking’
and ‘clean code’. They will also drive
beginning users from the marketplace
in droves.

Computers are to use, not to program!

David J. Beard

Newmanstown, PA

ACACACACACACACACACACACAOACAD

More letters, page 10

Heathkit’s

Computer

In 1975, pioneers trekked into the new
world of personal computing which had
been opened by the MITS Altair 8080.
Most were hardy electronics hobbyists of
the sort who hau previously found their
outlet in amateur radio. Since then, the
proliferation of personal computing has
created two classes of users—the hobby-
ists and the consumer.

The hobbyist is interested in the compui-
er and the consumer is interested in the
uses for the computer. The hobbyist
enjoys tinkering with the hardware and/
or software of his system in order to
make it do all the ‘neat’ things he can
think up for it, while the computer con-
sumer is interested in buying a pre-
assembled and tested machine with its
operating software in ROM and as much
preprogrammed applications software as
possible.

HOMEWORK

Heathkit’s H-8 system is an 8080-based
computer aimed at the hobbyist, but with
a difference; it is designed in such a way
that new hobbyists are created out of
some of the people who might not other-
wise venture into hobbydom. However,
Heath seems to be aware of the pitfalls of
shattered expectations: the president’s
message in the 1977 Christmas catalog
cautions that computers are not for
everyone. In addition, notes packed in
shipping cartons encourage the buyer to
examine the manuals carefully before
unpacking. Credit on a refund is offered
if the customer decides he’s bitten off
more than he can chew or the system
does not suit his needs.

There is no electronic kit of any sophis-
tication that can be assembled by the
complete novice. Most kits do not require
a knowledge of electronics although some
assume familiarity with components and
procedures (such as the polarity of diodes
and electrolytic capacitors). Heath has
learned from experience not to take
things for granted; I don’t recommend

System

BY TOM WILLIAMS

%

that a totally inexperienced enthusiast
attempt a computer kit and neither does
Heathkit. Far better to cut your teeth on
a stereo receiver or some such first.

A rudimentary knowledge of electricity
is important both in building a kit as
complex as a computer and in appre-
ciating in some measure what is going on.
Heath has built-in intermediate tests
along the way which help you catch and
isolate possible problems before you wind
up confronting an inert mass of circuitry
without knowing where to begin. Owning
and knowing how to use a volt-ohmeter
to measure voltage and resistance will
help a great deal.

The H-8 computer system I constructed
was a good sized task, requiring about
45 hours spread over a month and a half,
I have previously constructed a number
of Heath and other electronic kits ranging
in complexity from multimeters to color
televisions.

CONSTRUCTION

The system I built is advertised by Heath
as ‘System Two’ and it consists of the
H-8 computer, 16K of RAM, serial 1/O
and cassette board, audio cassette record-
er and the H-9 video terminal. The

assembly manual breaks down the impos-
ing array of parts to manageable segments
with a very clearly worded and illustrated
set of instructions. The philosophy of the
manuals seems to be that paper is cheap
and mistakes are expensive. Manual
changes and updates are included on sep-
arate sheets and you are instructed to
collate these updates before starting con-
struction.

Shortly before 1 started in on the H-9
terminal, I received a letter from Heathkit
which contained not only the latest
manual update, but also the piece of wire
I would need to perform the required
step!

For a person with some experience and
confidence, constructing the various com-
ponents is a straightforward task requir-
ing little but care and patience. However,
for those who either feel a bit uncertain
or run into trouble, Heath maintains two
islands of refuge. There are fifty Heath
Electronic Centers located throughout
the country. Each has factory-trained
people who specialize in different areas of
Heath products. Twice I had occasion to
visit the store in Redwood City, CA and
found the manager, Don Filmore, and his
computer service technician, Dick
DeCosta, both helpful and knowledgeable.

Of course, not everyone lives within easy
distance of a Heathkit store and Heath
has done what it can to help out here too.
They maintain a telephone number in
Benton Harbor, Michigan with technical
advisers answering whatever desperate
questions may come in from the hinter-
lands. I tried this number on four
occasions—twice with real questions and
twice with questions I had manufactured
(naughty me). It was occasionally diffi-
cult to get through, but when 1 did, the
woman who answered asked me how long
I had been trying to reach them. Heath is
responsive to the problem and is attempt-
ting to establish the proper size staff to
handle telephone inquiries about their
new product line.

MAY-JUNE 7

The technician 1 talked to had the
manual, schematics and answers at his
fingertips. The only nasty problem 1 had
was a strange display on the H-9 terminal.
The technician in Benton Harbor immedi-
ately recognized the area of the problem,
and rattled off pairs of IC’s for me to
swap around to try to isolate it. When
that didn't help 1 turned to the folks at
the local store, who ultimately discovered
a bad socket, a bad IC and (oops) a single
solder bridge I had missed. Just as editors
shouldn’t proofread their own copy, so
you should have someone else check over
your soldering if you suspect a problem.

THE SYSTEM

The completed H-8 computer looks dif-
ferent from some of the other 8080-
based systems on the market—the front
panel, for example. Whereas other sys-
tems have single LED’s to represent
address and data information, the H-8
has a nine-digit octal display. In the
‘memory’ mode, the first six digits
display the address and the last three
the contents of that address. Any address
in memory can be selected from the front
keypad and its contents examined and
altered.

In the ‘register’ mode there is direct
access to the internal CPU registers; you
can examine them or alter their contents
as you wish. The eight-bit registers are
displayed in pairs and the sixteen-bit
registers (stack pointer and program
counter) are displayed individually.

A significant feature of the mainframe
unit is the absence of a cooling fan. Each
board has its voltage regulator 1C’s
mounted to a heat sinking bracket on one
end. This bracket is in turn secured to the
chassis on the bottom and to a tie bracket
on the top so that heat is dissipated both
into the whole frame of the unit, and
through vents in the top and bottom.

=} =) =)
s } E::l “_‘ji:l

ADDRESS DATAREGISTER

L

Display of contents of an address in memory

B 1F
|

|

TR A | =

DATAREGISTER

|
|
ADDRESS

Display of contents of D and E CPU registers '

8 PEOPLE'S COMPUTERS

There are two controversial features of
the H-8. First, Heathkit has designed a
completely new bus structure which it
calls the Benton Harbor bus. It consists of
50 lines, all but seven of which have been
permanently designated. ..and Heath
tells you which ones it reserves the right
to change. Heath has defended its choice
of a new bus design on the grounds of
better electronic characteristics and cost
factors. It has been claimed that Heath,
by having a unique bus structure, wanted
to force the user to buy only Heath
boards, but this argument doesn’t hold
up. It is to a manufacturer’s advantage to
have accessories generally available to the
market. Even the biggest company can’t
produce everything at once and Heath’s
Director of Computer Products, Lou
Frenzel, told me at the recent West Coast
Computer Faire that they are hoping
other small manufacturers do start
producing boards compatible with the
Benton Harbor bus. Also, a new bus
structure cannot be marketed by just any
company. The manufacturer has to be
willing and able to wait for it to ‘catch
on’ which can mean relatively slow initial
sales. Thus, it looks as if Heath’s decision
to introduce the Benton Harbor bus was
not made lightly and is a testimony to
their faith in their design.

BENTON WARBOR

Secondly, there have been many discus-
sions as to whether octal or hexidecimal
notation is intrinsically better. Those who
have chosen one or the other seem
unshakable in their belief and this can get
to be a pretty personal matter. I was
weaned on hexadecimal and prefer it for
a number of arbitrary reasons. However,
my experience has been that it is easy
enough to learn to operate within another
number system. The only problem is that
the majority of published software for
microcomputers is in hexadecimal, so try-
ing to work between the two systems can
be tiresome. For this reason alone 1 wish
Heath had chosen a hexadecimal display.

THE TERMINAL

The H-9 video terminal sharply and solid-
ly displays twelve lines of eighty charac-
ters, upper case only . Most comparably
priced terminals display more than twelve
lines; evidently there was a tradeoff in
order to obtain the 80 characters per line.
As it turns out, twelve lines is sufficient
for most purposes and the eighty column
display can be quite handy.

The H-9 has three different display
modes: the standard 12 x 80 (mentioned
above), a short form which gives four 10
character columns, and a plot mode
which puts a line across the middle of the
screen and allows the display of simple
graphs—that’s graphs, not graphics. In
addition, there is a full cursor control and
a baud rate switch, which allows the user
to choose between 300 baud and one
other preselected speed from 110 to 9600
baud. One somewhat annoying aspect is
that the ‘return’ key is the same size as
all the others as well as being located next
to the ‘line feed’ and ‘scroll’ keys. This,
and the absence of lower case, are my
only reservations on what otherwise
appears to be an excellent terminal.

SOFTWARE

The H-8 is the first kit-form mainframe
system to include a complete sytems soft-
ware package in the price of the basic
unit. In the past, computer kits would be
sold with such things as IC sockets and
all software at additional cost. With the

H-8, all these are included, so there are

no ‘hidden costs.” A brief overview of the

software follows:

PAM-8: This front panel ROM monitor
allows control of the system through
the front panel keypad. In addition to
the display features described earlier,

PAM-8 enables you to load or to
dump from any desired port, to single
step through a program using the
single instruction key, and to reset the
system logic. Heath’s documentation
also provides a complete listing of the
monitor.

BUG-8: This console debugger allows
entering and debugging machine
language programs from a console
terminal, displaying and altering

memory and register contents, single
instruction program execution, and
tape load and dump routines.

TED-8: This text editor program allows
writing source code for assembly
language programming and configuring
and editing text material for other
purposes. TED-8 allows searching for
a given string, editing it throughout
the test or in specified lines.

HASL-8: This 8K assembler translates
source code listings (provided by using
TED-8) into absolute binary format
which can be executed by the com-
puter. HASL-8 can handle approxi-
mately 250 user-defined symbols.

Benton Harbor BASIC: This 8K BASIC
comes with the system; the extended
version of it is discussed briefly below.

For $20.00 Heath has available an
extended version of Benton Harbor
BASIC, written by Wintek Corporation.
At first 1 was a bit skeptical about the
label ‘extended’ since this BASIC resides
in just a little over 9K of RAM, but after
looking at the features, I find it quite sat-
isfactory for its size. True, it is not as
‘extended’ as some 12K versions insofar
as it does not have extensive editing and
tracing features. It does, however, allow a
number of operations not found in other
BASICs of this size and certainly not at
this price. The main improvements of the

extended BASIC over that supplied with
the computer are use of string functions,
expanded math funtions, access to the
real time clock, and a variety of
CONTROL commands.

The FREE command tells not only how
many bytes are free, but also how many
are allocated for text, symbol table, FOR
loops, GOSUB’s, strings, and workspace.
The STEP command will execute a pro-
gram one line orafew lines at a time, and
can be used as a primitive TRACE func-
tion. There is also a PORT command that
will output the results of a PRINT state-
ment to a port other than the console’s
port.

CONTROL commands are used to con-
figure the size of the print zone, set up
the front panel display to monitor a
memory location or register during pro-
gram execution, or to execute a specified
GOSUB from the keyboard.

Both versions of Heath’s BASIC repre-
sent numbers intemnally in floating point
and are accurate to 6 digits. [found a
noticeably weak point in exponentiation.

Raising a number (even an integer) to a
power using the T will not give a precise
result because BASIC executes this com-
mand by multiplying the natural loga-
rithm and then raising e to that power.
Thus:(X 1Y) = EXP (Y *(LOG(X))

[talked to the people at Heath about this
and they admitted it was a flaw. It is not
a bug, but a tradeoff in the interest of
memory space.

There is, however, one annoying aspect of
all Heath software—‘command comple-
tion.” Command completion means that
as soon as the computer recognizes a
command as unique, it automatically
completes printing the rest of the com-
mand. This may be a convenience for
those who type by the Columbus method
(discover it and land on it) but in general
it is a pain. If you type ‘RU’ the com-
puter supplies the final ‘N’ but, more
likely, a person will type the whole word
and end up with ‘RUN N’ on the screen.
Heath should be urged to supply software
patches to make this feature optional.

Considering the features that are available
in this extended BASIC for the size and
price, I must say it's an exceptional
value. In addition, the most recent
version (which I haven'’t seen yet) also
includes file capabilities—and its price tag
is still $20.

DOCUMENTATION

The highest praise is justly reserved for
last. I have already mentioned the assem-
bly manuals. The operation manuals
contain full schematics, timing diagrams,
options for configuring I/O, instructions
on the function of all keys, and detailed
troubleshooting flowcharts. The electron-

know of so far include:
H-17 Disk unit with 1 drive

H-8-16 16K static Ram
H-8-7 breadboard for prototyping

H-8 PERIPHERALS

Heathkit will be introducing more accessories later in 1978. The ones we

assembled kit
$675 (June, 1978)
extra drive $295

$395 (Aug, 1978)

We have also heard of other peripherals soon to be available from various
manufacturers, such as an S-100 adapter. We will report on these in the
Accouncements section when we receive more information on them.

$575 (Fall, 1978)

$95 (Aug, 1978)

MAY-JUNE 8

ically - interested user is able to study the
theory of operation and circuit descrip-
tion sections to the extent of his interest.

The Software Reference Manual contains
a detailed description of all the available
software as well as a complete listing of
the monitor and several BASIC utility
routines. One of the most striking things
about this documentation is this: it was
prepared before the computer was
actually marketed.

CONCLUSION

The combined quality of the hardware,
the software and the documentation
suggests that the H-8 system is an excel-
lent learning device. The documentation
is rich in detail and organized to help any
reader find his own level, whether he is
interested primarily in hardware or in
software. The assembly procedures make
kitbuilding accessible to those with limited
to moderate experience. The organization
of the front panel makes it possible to
demonstrate clearly the machine’s opera-
tion. The front panel should notr be
ignored by the beginner as something
esoteric to be reserved for the advanced
hacker, since it provides insight into the
logic of the software and the structure of
the machine.

With the H-8 system Heath has lived up
to the reputation it has already establish-
ed for quality in other kinds of electron-
ic kits. The company’s long experience in
hi-fi, amateur radio and color television
has given it the expertise required to
produce a first-class piece of hardware.
Engineering talent coupled with financial
stability have given Heath the confidence
to introduce design innovations. There is
room for improvement in the software
and Lou Frenzel is well aware of the need
for more systems and applications soft-
ware as well as the necessity of education
the customers. At a recent convention in
San Francisco he stated, ‘The computer
itself can be used as a teaching tool to
help educate those people interested in
computers. The idea is to provide com-
puter aided instruction programs that
individuals can use on their own comput-
er to learn how to solve problems and
program.” With this sort of awareness in
the top management, I feel we can
expect great things from Heath.

O

10 PEOPLE'S COMPUTERS

More LETTERS

continued from page 6.

The Computer Club at Coloma High
School wants to act as a clearinghouse for
microcomputer software for schools. This
would give schools a chance to exchange
programs and ideas, and to help other
schools just getting started by sending
them already working programs such as
games, memory tests, grading programs
and other such material. We are willing to
act as a center to publish computer pro-
grams for schools willing to share in
this idea and trade programs. Any inter-
ested hobbyists who have programs to
share with schools would be welcomed.

In our center we have eight different
microcomputer systems plus a 3M model
5500 test scorer. We can provide pro-
grams to share in 4 BASICs: the Poly
extended version AOO, Imsai CPM system
BASIC-E version 1.33, Altair 8K BASIC
version 4, and North Star BASIC. The
storage systems we use are the Poly 88
Byte Base Cassette recording system,
Imsai Dual Floppy Disk system with
CPM, Tarbell Cassette recording system,
North Star Mini Floppy Disk, and stan-
dard paper tape.

Terri Leamer
Coloma Computer Club

Coloma High School

Coloma, MI 49038
ACACACACACACACACACACADACACAC

In the last issue of People’s Computers
(Vol 6 No 5, page 6) Jim Day made
a comment about the game TEASER
which I would like to dispute.

First, there are in fact exactly 102
possible positions in the game of
TEASER (excluding rotations and
reflections). At least, that is the answer
I got and I've done the analysis three
times.

Second, there are in fact two errors in
the diagram as published in What to Do
After You Hit Return and in the
September '74 People’s Computer
Company. If you examine the diagram
you can see that the second board down
(from the top) in the third column
(counting from the left) and the fifth
board down in the fifth column are

identical. Likewise, the eighth and the
eleventh boards up (from the bottom)
in the fifth column (from the left) are
identical. The first-mentioned board in
each case should be replaced by Figures
1 and 2 respectively.

Figure 1

Figure 2

column 5 #8

column 3 #2

Eryk Vershen
Palo Alto, CA

ACACACACACACACACACACACAOACAC

Do you remember the Digi-Comp I?
It was an extremely simple mechanical
computer made of plastic sliders, metal
rods, and rubber bands, and it included
a three (binary!) digit readout. The Digi-
Comp was cycled with a manual clock
and programmed by the placement of
pins of various lengths along the sliders.
Pins on one slider would activate or
de-activate the rods, which pushed the
pins on other sliders and changed the
display. A later model, the Digi-Comp II,
used balls rolling down a ramp and
tripping flip-flops.

I believe the Digi-Comp was my intro-
duction to the world of programming and
logic. I never had the advanced model.
Does anyone still have one? I can’t help
but think that today’s kids of all ages
might enjoy puzzling out how it works
and trying to make it count from 0 to 7.

Kent Johnson

138 Hyde St. #19
San Francisco, CA 94102 O

ACACACACACACACACACACACACAOAD

- .__-—'"

e dr e deook e de v v gk ok ok T o ek ok o o ok dr o e o o ok o ok o % e st o o o ok d ok o ok o ok o o e o R o ok

W
*¥

Tk dhk ok kR kkk ok k
BY MARK PELCZARSKI

The movie STAR WARS suggests
numerous game ideas for use with
a computer. The real-time element
of this attack on Death Star makes it
particularly fun because, after all,
the fate of the Galaxy is at stake. This
game is by Mark Pelczarski, a teacher
at Sycamore High School in Sycamore,
Mlinois. In addition to programming
games, Mark has done a major project
and thesis on CAI and Computer
Managed Instruction at the University
of llinois.

My ‘Star Wars’ game is written for
an HP2000 Access System (time-
shared) computer. The statements
which may have to be changed on
other systems are the ENTER and
computed GOTO statements. Lines
680 and 1870 are the critical ENTER
statements (the others are just used
as pauses). The statement ‘ENTER
L, N, M’ will give the user L seconds
to reply and put his/her reply in
M (as INPUT M would). N is the
amount of time allowed for a
response —it is only used here to check
if the reply was not answered quick
enough, in which case N is negative
(—256).

Pt
¥

% e ok % % % A e e ok o o e g ok v v o ok o o o e b ok o e o o o o e o o ok

The statement ‘730 GOTO E OF 650,
1970, 740" takes the place of the
following string of ‘IF’ statements:

IF E=1 THEN 650

IF E=2 THEN 1970

IF E=3 THEN 740
Likewise, line ‘1370 GOTO M OF
1380, 1410, 1440, 1470, 1730,
1950, 1490° could be replaced with
seven (or six) IF statements.

The program as it is in this version
takes 2388 16-bit words on the
HP2000. If you delete the rather
lengthy instructions (lines 90-570)
the length is cut down to 1193 words.
Of course, some instructions should
be kept in, but they can be much
shorter.

This version of the game has 3 Tie
Fighters. One is programmed to track
you, the other two move around
randomly and are a general nuisance.
After the torpedo is chopped, you
have to pull out or else youll crash
into the tower in front of you and
never know what happened—whether
you hit or missed.

This version is more challenging than
my last one. I could beatit consistently
before (however it was beaten only
once at the 1-second interval). It took
3 or 4 serious runs at novice level
(with a S-second time limit) to
produce the ‘winning run’ that starts
on this page.

THIS FROGRAM WORKS BEST ON A CRT

WITH THE 40/80 SWITCH ON 40 (IF
THERE IS5 ONE). DO YOU WANT INSTRUCTLONBT

(*Y* OR *N°I?Y

THE ORJECT» OF COURSEs IS TO DROF A
FROTON TORPEDO DOWN THE EXHAUST SHAFT

IN THE DEATH STAR. YOU WILL START OUT
SPEEDING THROUGH THE CANYONr HOFPING
THAT NO TIE FIGHTERS FIND YOU. THEY
WILL . ¥OU ARE TO TRY TO AVOID THEM BY
MANEUVERING BACK AND FORTH» UF AND DOWN»
UNTIL YOU SFOT THE SBHAFT -- THEN FIRE!

YOU WILL BE SHOWN TWO VIEWS —- ONE
FORWARD (YOU‘LL SEE AN ‘X’ WHERE YOU

ARE LOCATED) IN WHICH YOU‘LL WATCH FOR
THE SHAFT: AND ONE BEHIND YOUy IN WHICH
YOU’LL LDOK FOR THE TIE FIGHTER (MARKED
AS AN ‘H’). BOTH VIEWS ARE LOOKING
STRAIGHT THROUGH THE CANYONs WITH THE
WALLS AT YDUR SIDES AND THE CANYDON FLOOR
BELOW. THE SHAFT WILL FIRST AFFEAR ON
THE CANYON FLOOR AS A ’.* » BUT YOU
WON’T FIRE UNTIL YOU SEE IT A8 A ‘D',
YOU MUST BE DIRECTLY ABOVE IT AND AS LOW
AS POSSIELE, DON’T FORGET TO PULL OUT
WHEN YOU SEE THE TOWER.

MAY-JUNE 1

AR SRS REES RSttt SRSttt i Rt R R R R R R R R R R R R R R R R

10

30
40
50
40
70
80

100
110
120
130
140
150
160
170

180
170
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

12

¥ WINNING RUN

YOUR COMMANDS ARE!

1) LEFT 4) RIGHT
2) UP 3) DOWN
5) FIRE 4) PULL OUT

BE SURE TO FRESS RETURN AS SOON AS YOU
GIVE YDUR COMMAND, OR IT WON‘T BE
RECOGNIZED. GOOD LUCK.

THE NUMBER YOU FICK FOR YOUR LEVEL WILL
BE YOUR TIME LIMIT (IN SECONDS) BETWEEN
MOVES .

YOUR LEVEL? (1-EXPERTy 2-VERY GOOD:
3-G00Ds 4-FAIRs S5-NOVICE.
20-SUPER NOVICE) 75

STAR WARS LISTING

REM STAR WARS
DIM HL43
PRINT "THIS FROGRAM WORKS BEST ON A CRT"

== 1977 —— MARK W, PELCZARSKI

FRINT "WITH THE 40/B0 SWITCH ON' 40 CIF®
PRINT "THERE IS ONE). DO YOU WANT INSTRUCTIONS?®
PRINT "(’Y" OR “N‘)*;

INFUT A%

IF A$='N" THEN 550

PRINT **

PRINT *. AN, . o G !
BRIGNE ¥, e S T o Y e 3
PRINT * . ', T e 1N
PRINT v v v v o 08 T A R v
PRINT % w0 Ve e 4 oW AR OB :
FRINTEL & et sl e i 5 T T N
PRENT: & 0 Wa M B BN o B
PRINT %5 st e @ ! T .

L]
ENTER 10sMsN
PRINT **
PRINT "THE OERJECTs OF COURSES

<— clear screen
IS TO DROF A"

PRINT *“FROTON TORFEDO DOWN THE EXHAUST SHAFT®
YOU WILL START OuTt*®

FRINT "IN THE DEATH STAR.
FRINT "SPEEDING THROUGH THE CANYON,
FRINT

HOFING®
"THAT NO TIE FIGHTERS FIND YOU.
FRINT *"WILL. YOU ARE TO TRY TO aAvOIn
FRINT "MANEUVERING BACK AND FORTH»
FRINT "UNTIL YOU SFPOT THE SHAFT ~—
ENTER 10rNeM '

FRINT "YOU WILL BE SHOWN TWO VIEWS -- ONE*
PRINT "FORWARD (YQU’LL SEE AN ‘X° WHERE You*
FRINT "ARE LOCATED)
FRINT "THE SHAFT»
FRINT
PRINT
PRINT
FRINT
PRINT *BELOW.
FRINT *THE CANYON FLOOR AS & ‘+' s BUT YOU*
PRINT *WON'T FIRE UNTIL YOU SEE IT AS A
PRINT
FRINT
FRINT

AND ONE BEHIND YOU»

"AS AN ‘H*), BODTH VIEWS ARE LOOKING"
"STRAIGHT THROUGH THE CANYONs

*AS FPOSSIBLE .
"WHEN YOU SEE THE TOWER,*

PEOPLE'S COMPUTERS

THEY*
THEM BY*
UF AND DOWN»*
THEN FIRE!®

IN WHICH YOU'LL WATCH FOR®
IN WHICH®
“YOU’LL LOOK FOR THE TIE FIGHTER (MARKED®

WITH THE"®
*WALLS AT YOUR SIDES AND THE CANYON FLOOR®
THE SHAFT WILL FIRST AFFEAR DN"

el
"YOU MUST BE DIRECTLY ABOVE IT AND AS LOW*
DON"T FORGET TO FULL Our*

!
!
!

l
!
!
|

4

COMMAND?

430
440
450
440
470
480
490
200
510
220
530
G40
§530
GH0
370
G580
590
&S00
G110
420
&30
&40
450
4a60
470
3z 14
H90
700
710
720
730
740
750
740
770
780
790
800
810
820
B30
840
850
B840
870
BB0
890
00
210
$20
730
740
P50

|
COMMANDT
3

| I
1 ! |
I !

COMMAND?
4

1 ! I H
| Xt IH

L ! J o SR
COMMAND?
1

=

ENTER 10sNeM

FRINT "YOUR COMMANDS ARE:"

FRINT * 1) LEFT 4) RIGHT"
PRINT * 2) Ur 3) DOWN"
FRINT * 5) FIRE &) FULL DuUT*®
FRINT

FRINT “BE SURE TO FRESS RETURN AS SBOON AS yOu*

FRINT "GIVE YOUR COMMAND: OR IT WON'T BE *

FPRINT *RECOGNIZED. GOOD LUCK.®

PRINT *THE NUMBER YOU PICK FOR YODUR LEVEL WILL®
PRINT "BE YOUR TIME LIMIT (IN SECONDS) BEIWEEN *
PRINT *MOVES."

PRINT *YOUR LEVEL? (1-EXFPERTy 2-VERY GOOD»*
FRINT * 3-GO00y A4-FAIRy G-NOVICEs"

FRINT * 20-SUPER NOVICE) "3

INFUT L

LET P=INT(RNDC(DIK13+8)
LET T=INTi(RND(O)%4+2)

LET Xl1= 1=1
LET X2=4

LET Hi=HZ=

LET E=-1

GOSUR 780

FRINT *"COMMANDT"§
FRINT

ENTER LaNeM
FRINT

IF N0 THEN 720
LET M#7

GOSUE 1280

GOTO E OF &50s1970:740

FRINT "WOULD YOU LIKE ANGTHER RUN
INPUT A%
IF A%$="Y"
GOTO 2000
REM -~ FRINT SCREEN -~

LET C=C+i

FRINT "" & cltar screen

FOR B=1 TO 3

GOSUR 890

NEXT H

IF C<F 1HEN B70

BGOSR 1210

RETURN

FRINT ¥ [odmseeimmren | B i
RETURN

REM -~ FRINT ROW -

FRINT "1*%

IF X1 <3 B ‘THEN 70

LET A$=tX"*

LET A=X2

GOSUR 1120

FRINT "1 X

THEN §%0

(2% OR "N

]] ! H)
! | ! H I j‘r
! X | IH 1 "‘r
1= | ! ! 2;:§. * ‘.ﬁt
COMMANDT * *
1
| 1] H 1
| | I H 1
! X | I H !
f e ! R !
COMMANDT i] { W
1 | [| H
N | H !
! e e |
| | 1 H o1 COMMANDT
R (I 1 H 1 5
Vi ibigreminion | fes =y ! I WWWWWWW | ! !
COMMANDT I WWWWWWY | 1 !
1 I LWWWWL | [HHH!I
e 1 R !
!] 1 H |
! Lo H ! COMMAND?
X ! ! H ! ¥fOU’VE DONE IT — A PERFECT SHOT!!
oy i | | e | CONGRATULATIONS!
COMMAND'T WOULD YOU LIKE TO TRY AGAIN (€Y’ DR "N°) 7N

4

AX kA kAR T A A A A A A A A A AT A AT A A A A A AR AR A A b rA Ak A A A A Ak d khhhk

P50

760

970

280

990

1000
1010
1020
1030
1040
1050
10460
1070
1080
1090
1100
1110
1120
1130
1140
1150
1140
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
12%0
1300
1310
1320
1330
1340
1350
13460
1370
1380
1390
1400
1410
1420
1430
1440
1430
1460
1470

PRINT *1 1*;
GOTO 980
PRINT * (L
LET A$="H"

IF H1 <> B THEN 1040
LET A=H2

GOSUB 1120

FRINT 1"

RETURN

IF Hi=0 THEN 1100
LET HEC1+21=F

LET A=INT{(RNO(O)X7+1)
LET HEC11=a

LET C1=C1#1

BOTO 1010

FRINT * \
RETURN

REM -~ LOCATE AND PRINT SHIF -
FOR 1=1 TO A-1

FRINT * *3

NEXT I

FRINT A%

FOR I=i TO 7-A

FRINT * *;

NEXT I

RETURN

REM - LOCATE SHAFT -
LET C2sC-PHl

BOTO C2 OF 1240124071260
PRINT *t=wwymin] oo o
RETURN

PRINT *|==-0——1 J=—mme—m]
RETURN

REM — MOVE -

IF G2<3 THEN 1370

IF M <> & THEN 1350

IF X1 <> 3 THEN 1860

IF X2 <> 4 THEN 1800

LET &=1

GOTO 1800

FRINT *YOU FASSED THE TARGET."
LET T1=1

GOTO M OF 1380,141051440¢14705173041750+1470
LET X2=X2-1

IF X2=0 THEN 1750

GOTO 14%0

LET Xi=Xi-1

IF X1=0 THEN 1780

GOTO 1490

LET X1=X1+1

IF X1=4 THEN 1750

GOTO 14%0

LET X2=X241

1480
1470
1500
1510
1520
1530
1540
1550
1560
1370
1580
1590
L4600
1610
1620
1430
1640
1430
16640
1470
14680
14670
1700
171G
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1700
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000

IF X2=8 THEN 1760

IF H2=0 THEN 1620

FOR I=1 TO 2

IF X2 <% HEI1 THEN 1530
IF X1=HLI+Z21 THEN 1570
NEXT I

LET Cl=l

IF X2 <> H2Z THEN 1620

IF X1 <> Hl THEN 1590

FRINT *YOU‘VE BEEN SHOT DOWM,*
GOTD 1740

IF Ti=1 THEN 1800

LET H1=X1

RETURN

IF T1=1 THEN 1800

IF M2 <> 0 THEN 1680

IF C<T THEN 14670

LET Hi=1

LET H2=4

RETURN

IF H2<X2 THEN 1710

LET H2=H2-1

RETURN

LET H2=H2+1

RETURN

PRINT *YOU MISSED,*

BOTO 1490

FRINT *YOU’RE GOING TO CRASHX*
LET E=2

RETURN
FRINT
RETURN
PRINT *tWWWWWWWL !
FRINT *IWWWWWWWE |
FRINT *lWWWWWWWE
FRINT *lommmmme | oo !
PRINT
FRINT
FRINT
ENTER LoNstt

IF M <> & THEN 1750
IF 5=0 THEN 1940

"YOU'RE OUT OF RANGE» MOVE DOWN!*

=
b x
- =

ETm T

"COMMANDT " #

FRINT *"YOU'VE DONE IT -— A PERFECT SHOT!!!*
FRINT "CONGRATULATIONS!*
LET E=2
RETURN
FRINT "YOU MISSED YOUR TARGET."
LET E=3
RETURN
FRINT "WOULD YOU LIKE TO TRY AGAIN (‘Y” OR
INFUT A%
IF A%$="Y" THEN 550
END
MAY-JUNE

NT)

O

13

APPLE lI

BY PHYLLIS COLE

Probably many of you are aware of the
Apple —at both Computer Faires held so
far their systems were showstoppers,
though many winced at the price. The
Apple Il minimum configuration costs
$1298 (without the color TV or cassette
recorder).

Just what do you get for that? Well, the
Apple Il minimum configuration consists
of a 6502-based system with a standard
ASCII keyboard built into a lightweight
(11 pound) housing that attaches to a
home color (or black and white) TV. It
comes with 8K of ROM (a 6K integer
BASIC and a 2K monitor), 4K RAM, fast
(1200 bps) interface for a standard cas-
sette, and documentation. Despite
Apple II's small size, there’s room on
board for two 2K socketed ROMs, up to
48K of RAM, and slots for 8 boards for
peripherals.

Apple has announced 2 boards for intel-
ligent peripherals. Their ‘Intelligent Com-
munications Interface’ can be connected
to any device which will accept a stan-
dard RS-232 interface, including the
103A-type modems. Features of the
‘Intelligent Printer Interface’ include the
capability for printing up to 255 charac-
ters/line at 5000 characters/second, and
an 8-bit parallel output port. No external
power is required. Each board retails for

14 PEOPLE’'S COMPUTERS

$180. As of June, Apple expects to be
shipping mini-floppy Shugart drives with
an interface board that can support 2

floppy drives; no price had been
announced as of mid-March. At the same
time a revised Applesoft BASIC (10K or
12K, they're still squeezing the code
down) will be available in ROM ($100)
or on cassette tape ($15).

The Apple II uses Microsoft BASIC
(which is rapidly becoming a de facto
standard by virtue of its availability on so
many systems—e.g. OSI Challenger,
Commodore PET, Tandy TRS-80) and a
screen editor. I didn’t much like having to
use 2 keys for cursor control (i.e. it takes
2 keystrokes to make the cursor move
one space), but I suppose that’s one of
the prices you pay for having a standard
keyboard. In text mode, the screen con-
tains up to 24 lines of 40 characters each.
No lower case letters can be displayed (a
limitation left over from teletype days)
which limits usefulness in educational
environments and excludes word proces-
sing applications.

Two graphics modes are available. The
‘normal’ mode allows you to plot on a
grid 40 cells wide and 48 cells high, In
‘high resolution” mode a 280 wide and
192 high cell display is available, An
optional 4 lines of text may be displayed

at the bottom of the screen in either
mode, thereby reducing grid size to 40 by
40 and 280 by 160, respectively. I saw
high resolution mode (which requires a
minimum of 16K of RAM) demonstrated
in graphing a Bessel function. The plot-
ting was impressively rapid, despite the
fact that the BASIC program calculated
in real time the location of each point.

Special BASIC commands allow you to
select a color (15 are available in normal
graphics mode, 4 in the high resolution
mode); read the screen color at a given
location; plot points, horizontal and
vertical lines; read the game paddles.

A User software bank is being establish-
ed by Apple; software for the system is
also often available through computer
magazines (e.g. Kilobaud, Jan & Feb,
1978). Software as now available for the
system looks similar to that found on
other comparable systems—disappointing.
Apple has announced plans to remedy the
program in part by field testing all soft-
ware and documentation as one way of
making sure only high quality materials
are released. That’s certainly a commend-
able first step, and one by which consum-
ers will benefit. It’s definitely time for
manufacturers of consumer systems to
turn more time, attention, and money to
the problems of producing software and
documentation.

Last but not least, a comment one one of
Apple’s recent ads. It joins a growing
collection (alas) that should have died
out long ago, picturing hubby in the
kitchen with his computer, while proudly
beaming housewife in the background
washes dishes (or pares vegetables or per-
forms other similar stereotypical tasks).
Hey, how ’bout some reverse discrimin-
ation? If you insist on putting the
computer in the kitchen, let’s at least
get the woman using it (no, not for the
recipes—how about some fancy graphics
program instead?) and let the husband do
the dishes for a change! O

The current enthusiasm about home com-
puters began in many garages and work-
shops across the country, as hundreds of
electronics fans patiently wired together
bits and pieces. At the time, it was the
only way to obtain a reasonably priced
home computer system; and only those
with some hardware experience were like-
ly to own a home system. Gradually the
trend has been more and more towards
home computers as consumer items. To
date, the VideoBrain comes closest to
presenting a computer as a consumer
‘appliance’, as evidenced by the fact that
it’s being carried in such stores as Macy'’s.
The consumer does not program the
machine, but merely inserts programs on
ROM cartridges and then wuses the
minimal keyboard and up to 4 joysticks
to provide input to pre-programmed
games or the built-in function.

The VideoBrain sells for $499.95, which
includes a keyboard console, 2 plug-in
joysticks, an AC power adaptor, TV
hookup cord and antenna switchbox, an
owner’s manual, and two introductory
cartridge program packs, Music Teacher |
and Wordwise I. The F-8 based system
plugs into your home color (or black and
white) TV. In addition to using ROM
cartridge programs, the system may be
used as a calculator. The user may also
type, edit, store and retrieve a brief mes-
sage and set an alarm.

VideoBrain is the name of the product by
VideoBrain Computer Company, a sub-
sidiary of Umtech, Inc, a Sunnyvale,
California Company. Distribution of the
system began early in 1978; there are
plans to make additional programs avail-
able on a monthly basis. As of April,
about a dozen such cartridges were avail-
able, ranging in price from $20 (Black-
jact, Pinball, Wordwise II) to $30
(Gladiator, Math Tutor I, Dr Samuel’s
Checkers, Video Artist) to $50 (Financier)
and $60 (Money Manager). Program size
is generally reflected in the price; pro-
grams now available vary from 2K to 8K,

VideoBrain plans to provide programs in
three main areas: entertainment, educa-
tion, and home management. Of the pro-
grams [saw, by far the most sophisticated
and interesting were those in the enter-
tainment category. Gladiator, for
example, is a 2-joystick, search-and-
destroy type of game. But on the
Gladiator cartridge there are 384 varia-
tions of the game with combinations of
features such as bouncing objects, guided
objects, fast objects, obstacle removal,
speed control, and number of players.
Last but not least, an overture and a
finale played over your TV’s speaker
accompany the Gladiator package. The
objects used in the game are created using
a bit map display, and so the gladiators,
lions, space ships, etc, are easily recog-
nizable detailed pictures.

The VideoBrain is not well designed to
support educational and home manage-
ment programs. In particular, the limited
amount of text that can be displayed, the
lack of lower case characters, and the

4

restricted keyboard are severe handicaps.
Hopefully future versions of the system
will be designed to better accomodate
non-video games.

Some consumers may dislike having to
rely on VideoBrain, at least for now, for
pre-packaged programs. No software
swaps are possible, since you're dealing
with ROM cartridges. Even if you pur-
chase the cassette recorder peripherals
offered by the company, you're still
faced with obtaining software in F-8
assembly language, and to date applica-
tions software for the F-8 is pretty much
non-existent.

The concept underlying the VideoBrain is
intriguing and attractive to the video
game buff who likes the idea of having a
system flexible enough to also be used for
other purposes, but who has no interest
in programming. If will be interesting to
see what changes will occur in the
product based on in-the-home
experiences of consumers. 0O

In Music Teacher |, as you type in notes they're displayed on the screen’s staff
and played over the TV's speaker,

MAY-JUNE 15

In our Jan-Feb issue (Vol 6, No 4) Bgrge Christensen reported
on COMAL, sometimes called ‘Structured BASIC'. COMAL is
a programming language developed by Christensen and his
associates at DATO, a Teacher Training College in Tonder,
Denmark. The language uses PASCAL-like control structures;
Data General’s Extended BASIC is a subset of COMAL.

This article is a tutorial on writing a simulator— the example
used is a casino. The clear style and ‘stepwise refinement’
approach enable even non-programmers to understand the
design of such a simulation.

Simulation is a problem-solving process, in which ‘the actual
system’ or ‘the problem system’ is mapped onto a model,
which most often takes the shape of a computer programme.
Mathematical models answer questions such as ‘What should I
do under such and such circumstances?’. Unlike mathematical
models, simulators answer to questions such as: ‘If I act this
way, how shall [expect the system to react?’ (‘If you push
buttons A and C, will it pour out a Carlsberg for you or wash
you away?’).

Since simulation does not imply that the model is solvable in
a mathematical sense, its applicability for practical purposes is
much broader than pure mathematical techniques. Simulators
have been designed to explain biological, psychological, socio-
logical, economical, and other phenomena of the real world.
Simulation has also been used to analyse systems in order to
plan and explain them better. You might say that the
simulator is built as a kind of ‘exercise’ to reveal the basic
features of the actual system. As you design the simulator. you
are forced to recognize what qualities of the different compon-

16 PEOPLE’S COMPUTERS

ents are very important to the system as a whole, and how
they interact with each other in it. In this article I'm going to
describe a simulator of this last type.

['ve chosen to simulate an imaginary casino. The reason for
using such a fancy system is that I may thus keep it reasonably
small and have some fun with the simulator afterwards. I was
inspired to design it by reading about a similar system in
Edwin R Sage’s book, Fun and Games with the Computer (a
very fine book; pity though that the author doesn’t have a
better language than BASIC as a vehicle to guide his bright
thinking).

The description will fall in three parts: First, a general specifi-
cation of the system is given: then as a second step, algorithms
for the different parts of the simulator are developed by ‘step-
wise refinement’, and finally the running program is presented.

In the following general specifications of the system, I have
adopted a method developed by Lars Mathiassen of the
University of Aarhus in Denmark. This method has been
applied in setting up several simulators, one of which was used
to analyse a large system employed by Danish hospitals for
maintaining case records, including working conditions for the
personnel attached to the system. My system is of course a
humble one compared to that, but the description should
nevertheless give you an impression of a method otherwise
found extremely efficient.

CASINO system:
CROUPIER component:
data structure: is standing at the WHEEL facing the

GAMBLER. May talk to the GAMBLER and spin the
WHEEL,
action pattern: asks the GAMBLER to make his guess
and then spins the WHEEL. The CROUPIER does so for
each new game.

end CROUPIER,

WHEEL component:
data structure: the WHEEL is about 2 m diameter and is
divided into 15 equal sectors. Five sectors are blue, four
are green, three are yellow, two are black, and one is red.
action pattern: the WHEEL is spun by the CROUPIER
and stops by itself after a few turns. When it has
stopped, one of the fifteen sectors is opposite the point-
er. The colour on that sector indicates the result of the
game.

end WHEEL.

GAMBLER component:
data structure: the GAMBLER brings with him a certain
amount of money, which he wants to stake hoping to
win. The GAMBLER can see the WHEEL, see and hear
the CROUPIER and the BANKER.
action pattern: the GAMBLER pays money to the
BANKER, who opens an account for the GAMBLER.
When the CROUPIER asks the GAMBLER to make his
guess, he may pick out one of the colours on the
WHEEL or he may quit the game. If he has selected a
colour and thus indicated he wants to play on, he must
make a bet with the BANKER. If the GAMBLER wants
to leave, the BANKER will pay him the amount of
money that remains in his account. If the GAMBLER
doesn’t behave properly he will be taken care of by the
BOUNCER.

end GAMBLER.

BANKER component:

data structure: during the whole of the game the
BANKER keeps up the GAMBLER’s account. He can
see the WHEEL and therefore knows the outcome of
each game. He also knows the colour which the
GAMBLER has picked out and the amount of money
staked. He may activate the BELL and he may summon
the BOUNCER.

action pattern: receives money from the GAMBLER
and puts it down to his account when the GAMBLER
arrives, and also if the GAMBLER has emptied his
account during the games, but wants to continue. Before
each game the BANKER records the GAMBLER's bet.
If this bet exceeds the amount of money in the account,
the BANKER will ask the GAMBLER to pay an
amount into his account or make a less ambitious bet.
If the GAMBLER refuses to do one or the other, the
BANKER will ask him to leave. The BANKER will only
accept a bet in whole dollar amounts,

When the WHEEL has stopped and the outcome of the
game is available, the BANKER will subtract the bet
from the GAMBLER’s account if he has lost, or add the
winnings to the account in case he has won. The win-
nings are calculated by the BANKER according to these

rules: If blue wins, the BANKER pays 1 to 1 or ‘even
money’,
if green wins, the BANKER pays 2 to 1,
if yellow wins, the BANKER pays 3 to 1,
if black wins, the BANKER pays 5 to 1, and
if red wins, the BANKER pays 12 to 1.

After updating, the BANKER informs the GAMBLER of
the status of his account. If the GAMBLER wants to
leave, the BANKER will normally thank him and invite
him to come again soon. If the GAMBLER breaks a rule
of the game, he is warned by the BANKER, and if the
GAMBLER has received four such warnings, the
BANKER will turn him over to the BOUNCER, who will
take proper retaliatory measures. In this case, the
BANKER will not thank the GAMBLER. An attempt
from the side of the GAMBLER to overdraw his account
will only be tolerated once; if he does so the BANKER
gives him a special warning and in case of subsequent
offence, the GAMBLER will be thrown out at once at
the request of the BANKER.

end BANKER.

BOUNCER component:
data structure: very strong man, with good manners,
though, and a persuasive bearing. :
action pattern: on the BANKER’s request he will ask the
GAMBLER to leave the house without making further
trouble.

BELL component:
data structure: electric bell. Is connected to a push but-
ton, which the BANKER alone may activate.
action pattemn: rings each time the BANKER pushes the
button.

end BELL

end CASINO system,

We shall now design algorithms for the different components,
and for this purpose I'll apply a method known as ‘stepwise
refinement’. In this method you start by setting up a survey of
the general structure of each component of the simulator.
Many details are suppressed in the primary description and
these details are then gradually introduced by refining the
algorithms. It all ends up with a program of the simulator,
which ought to answer the primary description of the system.

The component to look at first will be the GAMBLER. This
is the active object of the system, it has a certain liberty
whereas the other components are in fact restricted to reacting
accordingly. Our first reflections shall therefore be dedicated
to this component. We'll set up a catalogue of his activities:

he may get instructions for the game
he may put money into an account
he may guess a colour
he may make a bet
he may watch the outcome of the game
and have his account updated afterwards
he may leave the casino (one way or another).

MAY-JUNE 17

e e e =

Most of these activities are conditional; they are only carried
out on certain assumptions. Let’s look at them one by one:
The GAMBLER should only get instructions for the game if he
wants to. Maybe he’s been to the CASINO before and knows
all about the rules. Then he won't like to listen to detailed
and—to him—boring explanations of the CASINO’s favourite
peculiarities. We therefore modify the first statement into:

if he wants then instruct him on the game

To be recognized as a GAMBLER, you must put money into
an account. This is inevitable, so we leave the second state-
ment as it is. During the negotiations with the BANKER con-
cerning the opening of an account, the GAMBLER may
become so unpopular with this important person that he is
sent out. We shall have to modify the third statement into:

if he’s not going to leave then he may guess a colour

During this part of the game the GAMBLER may —according
to the rules—choose to leave the CASINO. The fourth state-

ment is changed to:

if he's not going to leave then he may make a bet

While making a bet the GAMBLER may again come to blows
with the BANKER over the rules; but if he makes an accept-
able bet the two next activities are carried through. We thus

may write:

if he's not going to leave then
have the wheel spun and
have the account updated

endif

Thus the prerequisite of the above mentioned activities is: the
GAMBLER is not leaving. Correspondingly the precondition
for leaving is that he wants to or that he must. At this level of
description we shall be content with having established that he
is leaving — for some reason or other:

if he’s leaving then let him (one way or another)

Whether the GAMBLER is leaving or not is seen to be of
crucial importance in all the cases we have set up. This in itself
is not so peculiar—if there is no GAMBLER there is no game—
but note that this precondition is in fact the only one we have
to know about at this level. I therefore choose to represent
that the GAMBLER is in a state of leaving—on his way out—
by a flag (a Boolean variable): OUT, which is set (assigned a

18 PEOPLE’S COMPUTERS

value of frue) if the GAMBLER is leaving, and reset (has a
value of false) if he’s not. After having introduced this flag the
GAMBLER's activities may with minor verbal modifications

be stated like this:

if the gambler wants instruction then instruct him
allow him to put money into an account
if not out then have him guess a colour
if not out then have him make a bet
if not out then
have the wheel spun
have his account updated

endif

if out then take leave of him (one way or another).

Finally we note that some of the above mentioned activities
are repeated as long as the game is running—(until the
GAMBLER leaves) and so we program the various actions as
procedures 10 get this final algorithm:

if the gambler wants instruction then exec instruction
exec account
repeat | | game is running / /
if not out then exec guess
if not out then exec bet
if not out then
exec wheel
exec account
endif
if out then exec exit
until out

The running program is part of this article. In lines 280-390
you'll find the algorithm just designed in the shape of an
actual running section of the program. As you can see I have
preferred to let this section of the program serve as main-
program (or monitor), since it represents the main component
(the GAMBLER) and all his doings. Also notice that the flag
OUT is reset from the start (line 170).

Before we go on looking at the various procedures, it may be
convenient to put forward some general principles of this kind
of program. When programming a simulator we shall have to
represent the states and quantities appearing in the actual sys-
tem in such a way that our computer may handle them. You
also have to represent the possible transitions between the
states of the system and the conditions that control these
transitions. One might say that the actions and decisions

must be mapped into the computer environment.

We also have to take into consideration that the simulator
doesn’t have the same physical limitations as the actual sys-
tem. Thus it would not be possible in the real system for a
gambler to bet on a colour not found on the wheel, but the
operator at the terminal might very well enter an illegal
response to one of the guess-requests of the sim ulator by some
mistake or to provoke the program.

Thuclz f}rst 1procedure to design would be account (instruction
will simply print out a lot of text). A first imati
would be as simple as this:) i

proc account
ask the gambler to invest
put his money into his account

endproc account

But man is a frail creature, so there is a good chance that it
won't be that easy. We shall have to foresee some of the nasty
tncks.the gambler might try with the BANKER, either because
hg misunderstood the rules of the CASINO or because he is
tricky. First, the BANKER should not accept an investment of
less than one whole dollar. Since the smallest legal bet is one
whole dollar, it would not be suitable if the game allowed the
GAMBLER to start with an inadequate amount—of say 65
cents. For another thing, there may be something wrong with
the money the GAMBLER brings in: perhaps the currency is
from some unknown country or has been made in the
GAMBLER’s own private works. All that and maybe more has
to be looked after by the BANKER.

Since we are working with a simulator, our system does not
accept real money as input (it would not be of much use to let
our CRT try to swallow a $5 bill), but then again we have
other pfoblems. Imagine, say, some wise guy trying to type in
a negative number, when asked to input the investment! (This
is aqother example of the simulator not having the same
physical limitations as the real system). What we must do, is
of course to interpret the various possibilities in a proper wa;y

and I've chosen to look at different infervals of the input t(;
represent some possible situations in the real system. Using the
variable invest to hold the input, I look at the following cases:

invest is negative
tell the gambler his money is false; warn him
when invest is zero
tell the gambler to be serious; warn him
when invest is positive, but less than one
ask the gambler to come up with real money;
warn him
when invest is not whole, but greater than one accept it,
but regard the fractional part as representing tips
and only put the integer part into his account
otherwise

accept the investment and put it into his account

Now, the BANKER will not have the GAMBLER sen j
!:ecause of a single mistake. He’ll give him a chan;emll::]?:f
invest, u{]til his investment is legal or he’s finally had enough
of him, i.e. he has given him at least four warnings. Thus we
shall have to represent whether or not the investment is legal
(the szate of the investment) and the number of wamings given
(? q.'._mnri'!y). To represent the legitimacy of the investment
I've u-!troduced another flag: OK, which is set, if the imrest:
ment is .acceptab!e, and reset, if it is not. To count the number
of wamings, I use a numeric variable: WARNINGS. Although
the_number of warnings is a quantity, it is finally used to
decide whether or not the GAMBLER is in a state of leaving.
This state has already been represented by the flag OUT, and
the transformation of the quantity WARNINGS into the state
OUT may be done by using a statement like this:

if warnings > = 4 then out: = true

This t:ansfom.lationl may, however, also be executed by a

fut)(;‘lemdﬁmcn;m. lSmce it may be that the reader has not seen
ch a device lately, I shall use it in this case

Boolean function ¢ by: i

t(x):=(x>=4)

gﬂjﬂle argument X is greater than or equal to 4, the function
output a value of frue, and for all other arguments, 7 will
output a value of false. Finally the procedure looks like this:

proc account
repeat | | get investment | |

ok: = false

ask the gambler to invest

cases of invest:

when invest <0
tell the gambler his money is false
warnings: = warnings + 1

when invest =0
tell the gambler to be serious
warnings: = warnings + 1

when invest <1
ask the gambler to use real money
warnings: = warnings+1

when invest <> int (invest)
cents are tips, dollars are entered into account

ok: = true
otherwise

ok: = true
endcase

out: =t (warnings)
until ok or out
endproc account

The procedure is found as PROC ACCOUNT (lines 74

in the program. It should be added that in thfa actual gr;:rsagz
the so-called ‘otherwise case’ is found between the CASE. . OF
statement (line 790) and the first WHEN statement (line 820)
The function FNT is defined in line 140 and used in line 1010:

MAY-JUNE 19

I've set up the rest of the procedures using the same method as
for PROC ACCOUNT, and I shall not go through tht?m in
detail, but rather restrict myself to a few remarks. I've tried tf’
be very careful with variable-names and tests to rnalfe it
possible for the reader, who has become familiar with the ‘flag-
representation” technique used in the MAINPROGRAM and
in PROC ACCOUNT, to read the program.

Another flag, REALBAD, is introduced in PROC BADBET
(subprocedure of BET) to represent the event that. the
GAMBLER has tried to overdraw his account. This flag is set
in line 2010 at the same time as BET is being cancelled as too
ambitious.

In line 380 you find the statement (mentioned above):
IF OUT THEN EXEC EXIT

We have already seen that OUT may be set for two reasons:
the GAMBLER wants to leave or he is forced to leave because
he has broken the rules of the game too often. In PRO_C
EXIT we therefore have to examine why he got there. This is
done in the statement in line 1080:

IF NOT FNT (WARNINGS) THEN

which is equivalent to ‘If the GAMBLER did not come here
because of too many warnings then. . .. Thus the BOUNCER
will only get hold of the GAMBLER if he has to leave because
of four warnings or more (line 1140).

The flags OUT and REALBAD and the numeric variable§
WARNINGS, BET and ACCOUNT are also called the attri-
butes of the GAMBLER, since between them they carry
around the information necessary to offer this component a
fair treatment. OUT and REALBAD are global flags, tak'mg
information from one procedure to another, whereas OK is a
local flag, used for procedure -internal purposes only.

In this simulator one of the components—the GAMBLER —
is stimulated from the world outside the computer. The per-
son sitting at the terminal is an essential part of th,e
GAMBLER, if not the gambler himself. Of course you can’t
control the outcome of the game, but anything else is up to
you.

A different kind of simulator is the so-called autonomous
one, which once started will run on controlled by its own
internal structure only. This is a far more important class of
simulator than the one presented in this article, but such
simulators usually are more complicated too. In my next
article | shall demonstrate how one can simulate some queue
problems of a small supermarket by using the principles of
autonomous components, controlled by random numbers only.

20 PEOPLE'S COMPUTERS

DO YOU UANT INSTRUCTIONS OF THE GANE? NO
HOU NUCH WOMEY DO YOU WANT TO INVEST? 488

WHAT COLOUR DO YOU WANT TO BET ONT
BLUE/GREEN/YELLOW/BLACK/RED BLUE

HOU MUCH DO YOU WANT TO BET? 48
e e T T
YELLOW
AMETTEAEASTE RSN SRR
SORRY! YOU HAVE LOST YOUR BET, UHICH UAS + 49

BETTER LUCK NEXT TIME!
YOU NOW HAVE $ 348 AT YOUR DISPOSAL.

UHAT COLOUR DO YOU WANT TO BET ON?
BLUE/GREEN/YELLOW/BLACK/RED BLUE#+¢+GREEN

HOU HUCH DO YOU WANT TO BET? 59

FEFTEITRITANERATAAGSAS

BLUE
SrLEATTAANRATAIENNE S

SORRY! YOU HAVE LOST YOUR BET, WHICH WAS % 5@
BETTER LUCK NEXT TINE!
YOU MOV HAVE ¢ 31¢ AT YOUR DISPOSAL.

SORRY! YOU HAVE LOST YOUR BET, WHICH WAS % 52
BETTER LUCK NEXT TINE!
YOU MOV HAVE % I# AT YOUR DISPOSAL.

4
w
w
i I
!!
3
« e
—
JE] | -
&5 2 g
» 3
(@] =]
= b]
= -t
$ L-—; < o &
& = 2
s
E] g
z 2
) o
—18 S
:E‘ w
m
8
I
m @

!!!!!!!E!!!!!!!!!!!!!=E!!!=!!!E!!!!!!!=!!!!=!!!E

WHAT COLOUR DO YOU WANT T0 BET ON?
BLUE/GREEN/YELLOU/BLACK/RED RED

HOW HUCH DD YOU WANT TO BET? 2

FrIEINANNNTT LR NRanSS

GREEN

EEwe

SORRY! YOU HAVE LOST YOUR BET, UHICH was s 2
BETTER LUCK NEXT TIME!
YOU NOU HAVE $ 8 AT YOUR DISPOSAL.

UHAT COLOUR DO YOU WANT TO BET ONY
BLUE/GREEN/YELLOW/BLACK/RED RED

HOU NUCH DO YOU WANT TO BETY 2

L e T T I

CONGRATULATIONS |
YOU HAVE WON § 24 AND YOU NOU HAVE
% 32 AT YOUR DISPOSAL.

WHAT COLOUR DO YOU WANT To BET ON?
BLUE/GREEN/YELLOU/BLACK/RED BLUE

HOU AUCH DO YOU WANT TO BET? S@
TOU HAUN'T GOT THAT MUCH HOMEY!
DO YOU UANT TO INVEST SONE EXTRA HONEY? YES

-
-
-
w
=
—
e
[
=
()
- - o
S & =
= B~ [
— - o
w“ - -
22 2
. =
- =
-~ - =
- = - =
TE-Ea %
-
MmO e Tw [T}
OE X W =2
Lol o= o
W W e =
Sy o=
— = g
< z:h- -— w
SJawvEwm - ~
20 = weE o~ = ~
Ewe s w] < |
-4 TES 1 = 1
wms oo] w o
= ' = 0 1
weee s] Dwe=
TOoO@x =-x] QW
— - 1 - n o
- o i T e A
OO ' T
- uEa o H - e ~ |
- | - =1 =0
0o W 1 - 0 = -
] — i - W o o
el el el 1 = Ll T R |
—a3saca U - o S e
- " % mae -~ - E #® & x ~
A A A e B
=
ﬁ:z:z::gztz:n—u:
W W W W W W T W
ﬂgﬂﬂﬂxﬂﬂﬂﬁﬂﬂd-ﬂ
- 2 AL LS
—zﬁ'ﬂ'hﬂl‘ﬂ-ﬂ - "
BRSNS - - - o~
‘..‘.-.-.-.‘--.

TIALIZED o+

ATTRIBUTES OF GAWBLER ARE INI

&0 REN s

HOU WUCH HONEY DO YOU WANT TD INVEST? 190
FEREERINR RS RR AR
BLUE

FRETARTRN SRS T ARSI A S

CONGRATULATIONS
TOU HAVE WON $ 198 AD YOU NOU HAUVE
$ 232 AT YOUR DISPOSAL.

WHAT COLOURK DO YOU WANT TO BET oNv
BLUE/GREEN/TELLOU/BLACK/RED RED

HOU MUCH DO YOU WANT TO BET? S@
PEREIEIARARE IR TR
BLUE

FEIEERIRARSATRIRANA A

SORRY! YOU HAVE LOST YOUR BET, UHICH waAS % 5@
BETTER LUCK WEXT TInE!
TOU NOU HAVE $ 182 AT YOUR DISPOSAL.

WHAT COLOUR DO YOU WANT TO BET ON?
BLUE/GREEN/YELLOU/BLACK/RED YELLOW

HOW AUCH DO YOU WANT TO BET? S8

AR L e T T
BLUE

EEIEAFIRRONAREATAAN 00

S/ND *,ANSUS

w
>
-~
w
=
<
(=]
- [}
- x
g
oo w
& — =
- < -
" - m e
= o é; = -
= w =
Wwa a0 - w
=1 - b w
- ma (=) [
=< o o= =So =
b T < - o L=
] =~ e ~ = = -
L L I . . o oo b
- - i = o -
@i Ee 1 - - Lt
e] [- Lad L il
® W oS i = = x o
s = 1 T == = x = (vr)
o= L I ' < < o w =
= [I | @ = T T o s
sell 4 >) e | o o Laal o S 4
Wl = e 2 =3 = =
b 8- R T I E S HEe T Lt
2= 2012 & -z 3B5ES
il e~ - o = -
v | - o — R
HEIDI = < B0 =00 —
B3ip2 ¥l ¥ T33.88588.53
- -~ = - x ™’
L e - ;; x < ol &
T O WL L = L
e E T ETETTETETCECEECCTCa i B bt o
e b G o L]
e . =Rl
hMAsLsLsBessEssaRew TeenEew
BB =M w0l Do . e N W D&
= o L L T T "o
bl il D S MRSl -

SDRRY! YOU MAVE LOST YOUR BET, WHICH WAS 4 58
BETTER LUCK NEXT TIME!
YOU NOU HAVE $ 132 AT YOUR DISPOSAL.

WHAT COLOUR DO YOU WANT Ta BET aN?
BLUE/GREEN/YELLOW/BLACK/RED BLUE

HOW HUCH DO YOU WANT TO BET? 249

YOU HAVN'T GOT THAT MUCH HONEY!

DO YOU UANT TO INVEST SOME EXTRA HOMEY? HO
THEN YOU“LL HAVE TO BET LESS,

YOU ONLY HAVE $ 132 IN THE BANK

DON“T TRY TD OVERDRAM YOUR ACCOUNT,
THIS IS AN ULTINATE WARNING!

HOU HUCH DO YOU UANT TO BETY 188
ARRETEEERATRRSIIN SRS

BLUE
LR L T
CONGRATULATIONS!

TOU HAVE UON $ 248 AND YOU NOU HAUVE
332 AT YOUR DISPOSAL.

UHAT COLOUR DO YOU WANT TO BET ON?
BLUE/GREEN/YELLOW/BLACK/RED GREEN

HOW HUCH DO YOU WANT TO BETY 488

YOUR PRESENCE IN THE CASINO 1S NOT WUANTED
PLEASE LEAVE THIS HOUSE UITHOUT anY TROUBLE.

THE CONTENTS OF YOUR ACCOUNT, TOTAL & 332
IS RETURNED FRON THE DESK AT THE ENTRANCE.

-
L
1
= =
- S =
o - -
> —_x
e T
.-) =0
= o —
=N S} bl]
- w
Lo | g
2 “ia
-l
=4 - e
o w -
- X -
S o o;m
- D ==
z=o o
< < o
> g o
=] & w
=~ -
== giﬂlﬂ
-0 =
- o -
|~ - e
=™ W= x
~ - =4 = -
~ T~ &=~ [
]] 2 xE = 3 =
' | (=] —- =
1 | T ETe =iz
' - t S o =S M
1 kst | (=] e = -
' @ ' -
1 s] =W S -
[= i [S0 ocoaew
| = i wn T IS 3 & = E
| = | < = =]
= ' t: [o LR =] ;; ;;s— ==
o ("™ =1 == s
—_ | (=] | w 0 = == ——
o> x ' =] w ECETTSwaaoaTe oz
=3 ' o ‘ = = D e & 0 A N]
e ~ - = ox W & E < =
- - - ~ ol = =
=1 D& W
EEE L ETCEETO0
X L W
SuExaeea v
AL TCTRTT AR BEEESS s .
R s R T NS DB — M v o P 00O m
DeS s T s wrswwviowmione VN v e o
MELALLEODCEE eSS = e

// Al

S$NSNYY, NENLIY, INIHLS “O3IHSINIS 3NYH NOA NIHM, LNJNI
LNT¥4d

#"INNDJOY ¥N0A WOM4 QILIVHLENS ST L36 ¥n0A “35007 NOA 41 . LNTdd

wl 0L b1 SAWd MIANVE 3JHL 'SNIN 034, 41 . LNIYd

wl DL C SAWd UIANWE IHL ‘SNIN ,NOY14., 41 . LNINd

wh DL £ SAVA ¥3NNVA 3HL “SNIA .n0TI3A. 41, LNINd

ol 0L Z SAYd H3HNYE 3HL “SNIN .N3I3WY. 41 , LNINd

W AINON N3N3.) | DL b SAWd H3NNVE 3HL ‘SNIN L3076, 41 . ININ¥d

LN1Yd

WIONIADTT04 3HL 3¥Y, LNI¥d

WONINNIN HO4 S3INY IHL GV ‘034, 390 'L R3¥74. ‘,n077134.. LNIHd

W' NIFYO, ‘,3NTE, 30 ISYN0D 40 AVM LT "H¥I4d¥ TIIR 3IW¥O, LNTHd

W3H1 40 IH0ILNO FHL ONY *N0LS ST 13THA IHL “HO SI L34 HNOA NIHM. LNISd
1HTHd

wi 113900 0314303¥ 34 ATNO TTIN LYHL “LNNOJOY HNOA AYHAYIA0 0L LON. LNT¥d
W3V YHIXI INYL ONY CNOILYLISIH LNOHLIN 4000 3HL NOA NOHS. LNIHd

WTTIN OHN “HIONNOA 3HL AG 40 38D N3AWL SSITIDHIN I¥Y NOA. INTH4

o “SONINHYM HN04 139 NOA 41 ONY ‘HIANVE IHL AE QINHYA 349, LHIHd

WNOA ‘D0 NOA 41 iSHITHL AWY ANL L.NOO ONY §SLH3ID ON “S¥Y7700. INT1¥4

o40 LNAOKY NY 138 0L 03N0TT¥ ATNO 34 NOA *SS3N9 3HL NO L34, LNTHd

«0L NOA HSY TTIN HIHNYE AHL “¥N0T0D HNOA LNOD G3NITJ IAVH NOL HIL4W, INTNd
INTYd

SNSHY ‘. NHNLIY, 3ATHLS “SIHL 03 3AYH NOA NIHA. LN4NI

INTYd

wONIHLIN0S TO0LSHIANNSIN LISAOTAG0 NOA JINIS “IWY¥D 3HL 40. INTHd
wSNOTLONWASNI 0393440 34% NoA ONY ‘7993771 0I4ICTSNOD ST, LNINd

W 3NON. O BHNOTI0D 3AL4 3HL 40 3INO NYHL HINSNY NIHLO ANY, LNTHd

W4N0702 ¥ LN0 HIT4 0L 3NSY. ININA

w389 N0A NIHA “ INON. NINSHY LSOC ‘34937 0L LNYA NOA 41, LNINd
W*031d3000 38Y SHADT0D 3AT4 ISIHL ATNO 03N ONY “HIVIE. LNTHd

W N0TI3A 'N33ND 3074 $S3883NG IAISS04 INIA INY INAWL, LNTHL

W"SS3NG ¥ YW 0L HITNOHD 3IHL A4 G3HSY 34 TI1IM NOA ONY, LNI¥d
«'HINANYS ¥ SY IIZINODIIY J¥Y NOA ‘0ILSIANT IAVH NOL SY NDOS SY, LNISd
INTH4

W ONTSYD 3FHL 3A¥3T LSAN NOA. INTH4

W00 LNYA L NOO NDA 4T “L3NOM 3HOM 3M0S LSIANI 0L NOA HSY 1TIA. INId4
AHIUNYE FHL CLHADIDY HOO0A ALAH3 NODA 3INYD IHL ONIMNG NOH3MDS 41. LNINd
JTLNMOJ0Y¥ ¥N0A 01 0300¢ 38 1118 SHYI700 0. LNINd

oLNNIONY 3HL ATND ON¥ “SJIL 3¥¥ SIN33 3HL “WNTHL 77,.3H ‘SIN3J ONY. INT¥d
JSYYTION MIH 3NID AOA 41 “H¥1700 | SI LHIWLSIANT LSITIWHS “A3NOM 3HOS., LNIN4
WLEINNI 0L fi0A HSY T1IR H3ANVE 3HL “IUVO STHL NI AYTd OL LNYA ROA 41, LNI¥d
LNTYd

SASHY, L NMNL3Y. INTHLS ‘SIHL 0Y3H IAVH NOA HIHM. LA4NT

LNIYd

w*3WYS 3HL 40 3H0ILN0 3HL SY 0L G3LNIOd SI SYN003 3IHL 40 3ND. LNI¥d
+*540LS LT N3HN ONY ‘¥3T4N0HD 3HL A8 WAHS ST T33IHN 3HL. LNI1dd

o034 ST HOL3IIS | NV “HIVI4 3 5401335 T. LHIN4

WADTT3A 34 SHOLO3S £ 'N3IIMO 34V SHOLIIS b “3INT9 34V SHOLIIS Su LNIZd

i 061 1) |
(#0ONISYD :HOLYINWIS 40 ON3+) W3y
LEE]

YLSNT J0HdON3

(#1.NO0M T 138 NOA ‘ONs) 3573 LY

41083 agél

THSONINNYA=SONTNNYA 13T #zél

LH144 #lal

L ISHINNYM HONS 40 3ADNJ4Y LON LIHIVI¥ID 5300 ONISYD 3HL. LNI¥d 051
LiLNADDIY HADA S0330%3 11LS 130 HNOA. LNTdd psgl

LHIY4 #9881

NIHL LNNDADW<L3E 41 <81

1HN033Y 33X3 8981

NAHL whu=(1)$ASNY 41 “ﬂw.

! i 183ANI OL LN¥H NOA 00, LO4NI |
$ASHY' W ON/53L AATNOM VYLK 3HOS DS b
1¥3434 881

LI AINOM HINM LYHL 109 L NAWH NOA. LNI¥d #iBl

3573 P8l

P=SONINYYN 137 LLT4}

N3HL gedw3y 41 88l

139044 2044 8L

fl =/ W3 B9L)
138 04403 #5410

LNO ¥0 #0 IiNn @eZ1
(SONTHEYN) LH4=L00 137 Ll
ELLRILE] 8zl

| +SONTHAYA=CONTNAEN 137 6141

LIIHIL HNO 31SYA LoMOG. LNIHd a9

INIHd 85651

#=r138 NIHN 0891

| +SONTHEYA=SONINYYA 137 891

LiANY3H "SLN3D 40 INWD ON ST STHL. ININd 8991

LHI¥d #8591

(138) INI<>138 NIHA B9l

13gavd 23%3 #E£91

INNODOY<LIE NIHA #z91

INYL=H0 137 #1914

(&40 SI L3d+) W3Y 8891

40 3n¥L 3Is¥a 8451

138%, 4134 D1 LNYA NOA OO HINH NOH. LNdNI #8sl

LNTHd Bl

35W4=H0 L3 #9561

1¥3434 8851

ININd B¥5I

LNI¥4 BES)

134 J044 Bsl

M3y BIs)

F e A LI 1

CEEW T

SALYLS J0M4ONT @8k

FROUER A 3

410M3 #vl

41aN3 g5k

n¥L=100 137 gkl

(£HONDMI O¥H 34,1 ‘ON#) 3873 #Erl

LHNO23Y 23X3 #zvl

NIHL wAu=CLISNSNY 41 “_..

Yi i W 3IYOM LSIANI 0L LNYM NOA 00. LNANI #vl
$HSNY' . DN/S3IL LAINOM 34 D S g
LOTHS04SI0 MNOA L¥.4LNNODDYS.8 3AYH NON NDA. LHIN¥d #5851
WIIWIL LX3N AN 431134, LHIYd [Fau!

139,46 SYH HIIHA ‘134 ¥nDA 1507 3AVH NOA {A¥YOS, LINTdd B9E1
LNIHd #SE|

138-LHNDIIY¥=LNN03DY 137 #ril

(#1507 IAVH nOAx) 3573 BEEL

S TUS04SI0 $N0A LY. 2LNN0JIYEws. LNIN [144}

LIAYH MON NOA OHY.SHOLOY4¢L38%,8 NOM 30YH NDA. LNI¥4 (1]
WISHOTLYINLYHENDD, LHI¥d aesy

LN1H4 BETL

1138 2313 @8zl

:9-._
W YdEaNwg 9 ' H

o "S1lHYd Q34N0T00 G34WHS-3T4 SI NI Q3¥0LI35 ST T33IHN 3IHL. LWI44 BIFZ
LINI44 Be%Z

¥ ONY ¥4 3 I NNDAE Y. LNIH4 BESE
43 ¥ SI INYD STIHL NI. LNINd @8SE
LNI¥d B45E

«ONITSH¥DI 7Y NS 23W¢0 3HL ST SIHL. LINI¥d @952
LINI¥d @857

HISHT 2044 @¥SZ

H3H BESE

I e, /4 W34 BTST

W34 #1582

43INN0A J0H4IN3 #EST

NYL=1n0 1371 B2

w"ATENOML ANY LNOHLIA 3SNOH STHL 3A¥3T 3I5¥30d. LNIMd @B¥E
wO3ILNYA LON ST DNISWI 3HL NI 3FINIS3IH4 HNOA. LNIHd BLbE
LINIdd #9%C

430NN0T D044 #5¢2

LELMN 1454

flor=snrram—r=——aff N3Y SREE

W34 eETvT

. 738 J04dONT B1kE

I LX3N @8¥2

e LNTHd BoET

HOLd¥4#E DL I=1 404 9BET

734 1044 #LET

W34 #9E2

==t N d- REET

W34 FREZ

T33HA J0Y4ONT BELT

alEkErneErEEEEsereanns, [NIY4 #ILT

INT44 BIET

$3W001N0% . o LNI¥4 B6FC

INTH4 B42T

phtEkRREEEaLERERERERES, [NIHd BBIT

INTNd @472

ISYNINI @922

9=H0LI¥4 L NI¥19,.=43002000 131 #52z

SI/FION N3HR #FZZ

v=HOLIVS L HOTI34,=$3H0DL00 13T [

S/k:N NIHR 82T
N33H9,=$3H0ILND 137 gl1ez
S/EXN NIHA deCZ

Z=H010%3 1.3N078.=43000400 137 g6l
£/13N N3IHn @8lc
134,=$3003400 137 B8LIE
40 3ny) 35%3 AR
(8)ONY=N 137 8512

T33HA J0Hd BrLE

LEL I 1

Ll = ———-==fl W34 @TiL

W34 Bz

+¢ ININDAMODD NIUNVE 40 ONI =+ N3N 91T
W38 #4087

flmmmmmmrmmmmm——=f) WY/ UBET

W34 B8z

13904 J0440HI #9862

4I0N3 0562

IN0 40 LNNDJIW=:>134 TLILNA Bvdc

33HN
3ldno

£=40L0v4

E1=40L004

(SONINYEN)LN4=4n0 137 #Taz

4T0K3 L2424

6=139 13NYL=ava1¥3y 137 ez

J+EONINSYN=SININNYN 137 BagT

w PONINYYA JIYNILIN NY SI SIHL, LNI¥d B&61

W LNTIDIJY ¥NOA AYNOUIAD 0L AML L NOM. INI¥4 861
WHNEE JHL NIW:LNNDIOVL W $ INWH ATIND MDA LNIHd bl
w8537 L3 0L IAYH 17.N04 N3HL. LHTHd 8941

LINTH4 B5al

HOLIYA» 130+ LNNDIIV=1NA0IDY 137 Bzl

N3HL $3HOILNO=8#N0T0D 41 BFC)

SNLYLS JDdd BSEI

CEERCLEA]

e L EL I 1

W3y 62T

LIN3 2044083 BITI

AIONI 89T

JCIINYHINT IHL LY WS3T IHL NOMJ INNNL3Y ST. LNTHd da1l
LNNDIDY4 .4 9101 *UINNODDY HADA 40 SINIINDD 3HL. LNTHd LAY
INTBd [N}

NIHL B<>LNNDITY AT 8911

41aM3 @511
43INnod 33X3 bl
3573 eEll

JAYT IHOS NI¥OY HIvd 360D, LNTHd ezl
L*3MNSEIT4 ¥ NI3E S.LL. LNIMA NIHL T>SONINYA Al #il
#3WY0 JHL HD4 SHNYHL. INTHd (13N
InT44 (11

HIHL (SONINNYM) M4 LOM 41 @8dl

1T%3 J04s 8481

CEERUAL

flmmmemmmmmm————={ [W3Y 8501

w3y el

LHNDD Y D0440NT BEBI

LN0 40 H0 11NN 8Z81

(SONINYYR) LR4=400 137 gl

I5HIANT Beg 1

IndL=xo 137 (1Y)

LEINNT4+LNNDIIY=LENDIDY 137 LETY

(LSIANT) LNI=LSIANT 137 L8

|4IS ‘SNOM3NIS 3 M ¥ NDA iSdIL. LNINd #9448
INTHd 8548
(LSIONTILINIC>1SIANT NIHA 121
| +5ONINNYR=CaNINYR 137 "wu“

i - N ji4IS OM. LNINd &
Li3549374 AINOM W3H 44015 LN3D LWHL LD e rs
1>1S3ANT N3HR asi
|+SONTNAYN=SONTNAYN 13T “Mwn

I ’ H4MT 3JHL O¥H TI. LNI¥d

W1 AISA0TH3S SIHL INV3AW NO4 *NOISS3 et i
#=153nNT NIHN EET]
[4SONTNYYA=-ONTNEYN 137 L15:1)
Lk - AJHON 3574 ¥NOL 433H. LNI1N4 #v3d
INTHd [3%:1]
#7LSIRNT NIHA #z8d
ngL=io 137 [15:1]
L15IRNT4LNNODAY=LNN0ITY 137 (151
40 3In¥L 35¥3 174
LR J1 0L LHYA NOA O A3NOK HINW AOH. LN4NI 8688
LS3IANT*, i1S3ANT O o oo

35T 4=H0 L3 B9L8

193434 85L8

LHN0IDY J0Hd 8v

w3y ecie

flmmmmmmmmm === f [WIY BTLE

U3y BILR

: 17044 ONINOTIDS 3His) W34 @8.@
(#SHSH1 SHINNWA 3¥Y §3uNaID ol
ffmmmmmmmms === H3Y LR

H3Y BL98

55309 J0YJONT @978

90 MO LND ILNN 6598

EECRLTE] pr9d

ndi=xo 13 eLve
w038 26T WHDTIEA, W NI3H0. L3NTE. NIHN L4l
INYL=1n0 131 8199

PEOPLE'S COMPUTERS

22

23

MAY-JUNE

The first Faire was in the year of the CPU.
The second Faire brought in the year of
the Floppy. Will next year be the year
of the Software?

One thing remains the same: three days
of Faire is murder on feet. Last year
I went as a reporter and a speaker, this
year as an exhibitor. The view was pretty
much the same from any of these
perspectives—not enough room for all
those people. The hall at San Jose, from
its ironwood floor to its steel beam
ceiling, was smaller than last year’s site,
and the auxiliary rooms were fewer, if
easier to find. Since I belonged in a booth
most of the time, 1 picked up only a few
presentations. They were well presented
and well attended. In one of them two
out of three speakers hadn’t shown up,
and I ended up filling in with an
impromptu lecture.

Gordon French, Adam Osborne, & Jim Warren —Friday banquet

24 PEOPLE'S COMPUTERS

BY JEF RASKIN

I can’t say much about the hot dogs. I
had one, and never went back.

The exhibitors were mostly familiar
faces. A few had obviously grown and
prospered, some have maintained them-
selves, others have withered. Some old
friends are gone forever.

The packaged, ready-to-fly systems have
come a long way. Pet and the TRS-80,
which were only rumors and a few hand-
made prototypes a year ago, are now real.
Apple grew from a garage operation to
a large, prestigious-image company: you
know —stark white and rich teak. Apple
even had a disk or two to show (but not
to sell). MITS (now Pertec), our
progenitor, didn’t bother to show up.
IMSAI made a weak showing, and seems
to be looking at the business market and
forgetting the personal computer crowd.

Polymorphic Systems had the neat disk
system they’ve been advertising, and
North Star had what looked to be a very
similar product. Cromemco, which always
has a solid product, had their quad disk
system with large floppies. There were a
lot of companies which proved that they
could make a motherboard, a power
supply and a box that would hold and
power S-100 boards. There were fewer
new boards this year—at least fewer
radical ones. There seemed fo be more
memories, and there were more bits per
memory board. SWTP kept their line
going. Heath was there, and they had
floppies too. Everyone had, or was
promising, floppies. Most gross thing
at the show? A T-shirt, worn by a young
woman, which advertised in large letters:
1 have dual floppies.’” Funniest thing
at show? Jim Warren announcing that the
exhibits were to close in five minutes.

Dave Caulkins, Mike Wilbur, & Ron Crane —PCNET session

A lightly attended exhibit area

For the second time. And then, in a faint
voice (with the mike still live), ‘That was
the second time, wasn’t it?’ Biggest
surprise? The good food at the banquet
at the Holiday Inn. Best computer? The
Terak machine displayed by Dr Bowles
of UCSD. Its $7K price tag will keep
it out of most of our hands for a while.
Neatest packaging? Split it ~between
OAE’s EPROM burner and their paper
tape reader. Best technical achievement?
Apple’s extraordinary simplification of
the Shugart electronics. Most omni-
present person? John Craig of Kilobaud
and his camera. Headiest thing about
Faire? Meeting all those people that you
usually just read about. They were almost
all there.

I had a good time with the ALF music

synthesizer by joining Carl Helmers at
the keyboard for a moment of Mozart.

An under-attended conference session

Southwest Technical Products Booth

The PAIA string synthesizer gave me an
hour of pleasure as I tred to sound like
a Baroque string orchestra. It did a
creditable job. I wasn’t bad myself.

Last year we were all debating whether
the 8080 was better than the 6800 or the
6502 or if the Z80 would rule the world.
This year the 16 bitters (sounds like a
drink) loom just over the edge of the
world. But our sophistication has grown.
We now know the utility of hard copy,
and there are a rash of clever little
printers. We know that we need mass
storage, and the Shugart drives spread like
Tribbles. This year’s software vendors
look like some of last year’s hardware
vendors. Mimeographed sheets, sloppy
documentation (with some earning a
hearty ‘good try there, old chap’), and
products scattered like rice at a wedding.

During this coming year software vendors
will continue their growth and a few
serious personal computing software
houses will become prominent in the
industry. Meanwhile the manufacturers,
having learned for the most part how to
manufacture and sell computers, will
be trying to learn how to manufacture
and sell software. And a few will even
turn out some documentation that can be
read by people other than the insiders
at whom this report is directed.

Apologies in advance to all those exhibi-
tors I haven’t mentioned. If this report
seems a bit dizzy, it's because that’s
the way the Faire was. It was every bit
a fair, not a convention or scholarly
meeting. It was a happy event and a kind
of celebration. My compliments to Jim,
Bob, and Rick for doing it again. O

Mills College’s computer music demonstration

MAY-JUNE 25

COMPUTERS

26

PEOPLE'S COMPUTERS

HARDWARE & SOFTWARE HELP SOUGHT
in developing a portable communications
system (a keyboard and 1-line display) for a
person who can’t speak.

Steve Gensler

1620 Thousand Oaks Blvd

Berkeley, CA 94702

(415) 624-6162

At the left Robin, a cerebral palsy patient, is
shown using her Poly -88 based communications
system, The System is controlled by a knee
switch; it can be mounted on Robin’s wheel-
chair. Robin can build messages on the CRT
gither by selecting words from a 1200 word
vocabulary or by spelling them out. In our last
issue we published the software and necessary
hardware modifications for Robin’s system.

Robin’s system was developed by Tim Scully,
shown below at McNeil Island Penintentiary.
Tim is now building a similar system for
Federal Prison Industries. He is interested in
hearing from people working on micro-
computer communication systems for the
handicapped. His mailing address is Tim Scully,
35267-136 SH, PO Box 1000, Steilacoom, WA

<

Stevie Wonder was a surprise visitor to Michigan State University's
*talking computer’ center recently, visiting with *J J' Jackson, a systems
analyst at the MSU Artificial Language Laboratory. Wonder came to
celebrate the 28th birthday of his friend and former classmate at the
Michigan School for the Blind in Lansing. MSU's ‘talking computer’
has been programmed by John Eulenberg and Morteza Rahimi, profes-
sors of computer science, as a speaking—and sometimes singing—voice
for handicappers with sight and other physical difficulties.

)

A Documentation Technique for Computer
Hobbyists and Programmers

@%@?@%@.ﬂ@)

BY TODD L VOROS

Does the name Todd Voros ring a bell? It should, if you're a
fan of good ol’ Fortran Man. When not working with Lee
Schneider to create more adventures for F-Man, Todd can
often be found under the title Systems Software Specialist at
A.0. Smith Corporation in New Berlin, Wisconsin.

A computer, in order to perform a useful function, needs to be
told what to do. This can be done by a ‘canned’ pre-written
program which one may have purchased, or it can be done by
a program which the system user has written himself. If a
‘canned’ program is unavailable, the user will be forced to
write the program himself, The purpose of this article is to
illustrate a technique which can help minimize errors in one’s
programs and help simplify the process of ‘debugging’ (that is,
correcting) a program after it has been written.

The technique is called Sketchcode; it is based on concepts
defined in metaprogramming and structured programming.
Metaprogramming involves having the user write his program’s
flow of control in an individualistic, stylistic pseudo-language
and then translating that pseudo-language into an actual com-
puter program, which will be executed by his computer
system. Structured programming is a programming method-
ology that helps guide us in defining metaprogramming ‘con-
structs’ such as IF-THEN-ELSE, DO WHILE, CASE OF, and
defines how they are permitted to be combined. Structured
programming has occasionally been called ‘GOTO-less” pro-
gramming. The structured programming concepts contained in
this article were first defined by E.W. Dijkstra and Niklaus
Wirth.

Programming errors and debugging time are minimized when
we have a firm grasp on exactly what it is our program is sup-
posed to be doing when it executes. One well known method
of doing this is flowcharting: illustrating the flow of control in
a program with a pictorial diagram.

A ‘structured program’ attempts to illustrate the flow of con-
trol in the actual source of the program itself, and the form

and syntax of the actual source program (and what the com-
piler or system interpreter will accept) play an important role
in the formation of this type of program. The advantage lies in
the fact that when one is debugging the program, the source
listing may be used to determine directly the flow of control
intended by the author of the program at any given point
within the program, without reference to flowcharts.

Unfortunately, structured programming does not lend itself
very well to programs written in assembly language because of
restrictions imposed upon the programmer by most assemb-
lers. For example, indentation of source statements in a pro-
gram which utilizes structured programming concepts is often
significant and the assembler may not permit this, or lengths
of label operands may make writing an indented statement
impossible.

The concepts of structured programming and metaprogram-
ming, however, apply regardless of the language being used.
Since the aim is to document the flow of control within a
program, it would be nice if there were some intermediary
compromise available. Such a compromise would have to satis-
fy the requirements of both high-level (BASIC, FORTRAN,
etc) users and low-level language (assembler) users. It should
help document the flow of control, and be easy to learn and
use.

Sketchcode is a metaprogramming pseudo-language intended
to satisfy these goals; and is intended to complement, not
replace, flowcharting. It is always better to have too much
documentation (if such a thing is possible) than too little,
especially when a malfunctioning program must be corrected
several years after it has been written or when correcting a
program you did not write. The use of the metaprogramming
philosophy in designing programs can save time and effort
when one is coding in any computer language. Sketchcode
suggests one of the many possible ways in which this philos-
ophy of programming may be utilized.

MAY-JUNE 27

To get a clear idea of what Sketchcode does, let us first see
exactly what programs are made of. A program is an imple-
mentation of one or more algorithms intended to solve a
problem expressed in a machine digestible form. The algorithms
can be composed of processes that do not require decisions
and those that do.

Many programmers are familiar with the concept of
documenting algorithms by flowcharting: A diamond shape
represents a decision, a rectangular box a process not involving
a decision, Lines and arrows connect these and other
geometric forms together and show the flow of control that
takes place when the algorithm is executed by the computer.
Sketchcode also has basic components just as flowcharting
has. To show the relationship between flowchart representa-
tion of an algorithm and its Sketchcode equivalent, the
following examples will show both the flowchart and Sketch-
code representation of the same logical structure.

One of the basic ideas in structured programming is that
logical levels of control are illustrated by indentation of
language statements. Sketchcode, being based on this
philosophy, also indents statements. One of the reasons we
indent statements is to show where the majority of a
program’s execution time is spent, and under what conditions
certain sections of code can be executed.

Most computer programs have loops. A loop can be expressed
in Sketchcode as follows:

DO WHILE (an expression);
PROCESSING
END;

Note that PROCESSING is indented two spaces to the right.
All other sketchcode processing within that loop will be
indented two spaces to the right.

Here’s a flow chart for a loop:

{

Is
expression
TRUE?

PROCESSING

The (an expression) part of the loop may contain any number
of variables; the evaluation of the expression results in the
assignment of a TRUE or a FALSE condition. While the
condition remains true, we will execute statements contained
inside the loop. If the condition is false, we do not execute
any statements in the loop; it is as if we had ‘fallen through’
the loop without stopping to examine anything within it.

28 PEOPLE’S COMPUTERS

We will simply begin executing statements after the END;
which signals us where the loop ends. This is why it is not
indented two columns to the right like PROCESSING.

We can get out of a Sketchcode DO loop by having
PROCESSING within the loop alter the value of one or more
variables contained within (an expression). For example, to
execute some process 10 times we can write:

COUNT = 1

DO WHILE (COUNT less than 11);
PROCESS
COUNT = COUNT + 1

END;

Naturally, the expression that is tested for TRUE or FALSE
could be much more complex, e.g. DO WHILE (I = A+2 OR
B = C—D). In addition, we can put a loop within a loop,
always making sure to indent two spaces to the right when
appropriate:

DO WHILE (I less than 10);
PROCESS
DO WHILE (J less than 5);
MORE PROCESSING

END;
END;

and observe that each DO has its own closing END statement.

This way of representing the logical flow of control of a
program allows you to clearly and concisely express some
fairly complex situations involving loops. Note that the inner
DO loop was indented two columns to the right and processing
performed under its control was itself indented two columns
to the right. Thus the deeper a loop (ie the more nested it
is in the logical flow of control of the program), the further
to the right it will appear in the program’s Sketchcode
representation. Code that is indented farthest to the right will
also probably be executed more often than other portions of
the program, so if you have written a Sketchcode representa-
tion of your program you should concentrate any optimizing
efforts on innermost loops first. However, programs are not
composed just of loops, and we must consider other elements
of a computer program.

Decisions are also of prime importance in directing the flow
of control within a program. In Sketchcode, a decision is
always represented by a structure of the following form:

IF (expression)

THEN DO;
PROCESSING performed if expression
is TRUE
ELSE;
PROCESSING performed if expression
is FALSE

which is how Sketchcode implements the IF-THEN-ELSE
construct. The flowchart equivalent is:

PROCESSING PROCESSING
for for
FALSE TRUE
condition condition

IC. |

v

Notice that for readability the THEN DO; and the ELSE; are
indented two columns to the right and their corresponding
processing is itself indented two columns to the right. Since
a Sketchcode expression is required to be TRUE or FALSE
either the processing under the THEN DO; will be executed
and the processing under the ELSE; will be skipped, or the
processing under the THEN DO; will be ignored and the
processing under the ELSE; will be executed.

There exist two special cases of the Sketchcode constructs
discussed so far. These are when we wish to do nothing based
on some condition and when we wish to do something forever
(a never-ending loop). We can ‘do nothing’ in an IF-THEN-
ELSE if we omit the ELSE; which permits us to execute
some processing only if some condition defined by (an
expression) is true and to do nothing otherwise:

IF (an expression)
THEN DO;
PROCESS ING
OTHER SKETCHCODE STATEMENTS

Here’s the equivalent flowchart:

PROCESSING
for

TRUE
expression

and to solve the problem of the never-ending loop we intro-
duce the Sketchcode word FOREVER:

DO FOREVER;
PROCESS
END;

And the flowchart:

' START '

b 4

PROCESSING

s

An example where we may wish to employ the DO FOREVER
construct is in documenting a program which once loaded
into our machine will request input from the user, process
it, girint out a result, and await further input in a never-ending
cycle.

Finally, Sketchcode allows for the use of subroutines. A sub-
routine in Sketchcode representation is invoked by a CALL
statement. A subroutine in Sketchcode is defined by giving
the subroutine a name followed by a colon, and indenting
all statements in that subroutine two columns to the right
under the label. A subroutine ends with a RETURN; statement.
The RETURN; statement aligns with the label giving a name to
the subroutine. In Sketchcode only one RETURN; may appear
in a subroutine. A subroutine may have one and only one
entry point and one and only one exit point. This may seem
to be a severe restriction but it will enforce a top-to-bottom
flow of control within a subroutine. For example, to invoke

a subroutine to return the larger of two numbers we could
write:

CALL BIGGER (A,B,BIGGEST)
and at some point define BIGGER:

BIGGER: (A,B, BIGGEST)

BIGGEST = A
IF (B IS GREATER THAN A)
THEN DO;
BIGGEST = B
RETURN

In Sketchcode you can either assume all variables are known
to all subroutines (all variables are global) or you can piss
variables to a subroutine explicitly by putting them in a
list enclosed within parentheses after the call statement
and having a corresponding list after the label defining the
name of a subroutine. It is a good idea when writing
Sketchcode subroutines to start them on a fresh piece of paper
rather than mix them in with other Sketchcode.

MAY-JUNE 29

The structures we have defined are completely adequate for
the expression of any problem capable of implementation on
a home hobbyist computer system. But, you may ask,
‘WHERE ARE THE GOTO STATEMENTS?’ (or jumps, or
branches if you prefer). The answer is there aren’t any in
Sketchcode. Program logic always flows from top to bottom,
through various levels of indentation on the way, and program
loops are always clearly documented. Sketchcode forces you
to provide a clear, concise definition of what you wish your
program to do, but still allows you to express yourself in an
individualistic style. (Our own examples certainly aren’t part
of any ‘legal’ programming language.) When you have written
your program’s logic in Sketchcode you will find it easier
to follow for both yourself and others and if you have defined
the logic (not the actual coding of your program) you can
write your program for a different computer with much less
effort. And last, but not least, if you really want to make
your programs self-documenting, include your Sketchcode
representation of the program as part of the COMMENTS
in the assembly language version of your program (show what
each Sketchcode statement expands into in actual machine
instructions). However, no matter what the language, Sketch-
code should assist you in providing better documentation
and insight into your program’s operation.

hiaks

Here are a few hints on the use and writing of Sketchcode

based on two years of working with it:

e If you find yourself writing a lot of IF-THEN-ELSE,
[F-THEN-ELSE clustered closely together in your Sketch-
code, ask yourself the question: 7s this really a DO in
disguise?’

e Remember that searches through tables, lists and arrays
are usually implemented by DO’s.

e Don’t forget to indent when going to a deeper level of
control.

e Remember that all IF’s do not necessarily require an ELSE!

e [f possible, break up large numbers of sequential Sketch-
code statements into subroutines. Try to make a subroutine
fit on one page of paper, if possible, decomposing it into
two or more deeper subroutines if necessary.

Example:

INITIALIZE A: B:
CALLA CALL A1 PROCESS
CALLB PROCESS| |RETURN
CALLC CALL A2
STOP RETURN
Page 1 Page 2 Page 3
and so forth. . .

30 PEOPLE'S COMPUTERS

Processing performed under the legs of an IF (the THEN DO
and ELSE) can be switched by negating the results of the
expression you’re testing. Thus,

Thus, 1F (X=0)
THEN DO;

A=B

ELSE:
A=B+B

is the same as

IF (X not equal to 0)
THEN DO;
A=B+B
ELSE;
A=B

The following point is somewhat tricky, but worth considera-
tion if your Sketchcode doesn’t ‘seem right’: If the ELSE
condition of the IF can be reached by code prior to the IF
test, then it is not an ELSE condition. Remove the ELSE
and the indentation of the code under the ELSE.

Ask others to review the Sketchcode representation of your
program. This can help detect errors you have not caught yet.

Before you begin to write down the very first machine or
assembly language statement of your program, have the
completed Sketchcode representation of your program in
front of you and code your actual program from the Sketch-
code directly.

On the opposite page we demonstrate how the same Sketch-
code listing (the metaprogram representation of the solution
to the problem) can be used to document programs for two
quite different machines, one in 8080 code and the other in
6502 assembly code.

Here’s an example of how Sketchcode can be applied to solve
a problem.

The problem: Determine the largest and smallest numbers
stored in an array in memory. The smallest
number possible will be zero, the largest
will be the maximum the machine can repre-
sent.

Assumptions:
1. Array is in sequential location (not scattered over memory).

2. The array consists of N elements,
ARRAY(1) retrieves the first element of the array.
ARRAY(N) retrieves the last element of the array.
ARRAY(5) retrieves the fifth element of the array, and so
forth.

3. INITIALIZE sets up our machine specific environment
necessary to operate. (Clears registers, for example.)

O

8080 CODE
ORG 1¢@@H
INDEX: EQU @
LX! SP,STACK
MVI A,0
STA BIG
MVI A, 7FH
STA SMALL
MVI A,58
STA ASIZE
MVI INDEX, @
MVI C,1
DO; LDA ASIZE
CMP ¢
JC ENDDO
LHLD AADDR
DAD INDEX
MOV E,M
LDA SMALL
CMP E
JC T1
JEZ T1
MOV ALE
STA SMALL
T1: LDA BIG
CMP E
JNC T2
MOV A,E
STA BIG
T2: INX INDEX
JMP DO
ENDDO: CALL PRINT
DW BIG
DW SMALL
HALT: HLT
JMP HALT
BIG: DS 1
SMALL: DS 1
ASIZE: DS 1
AADDR: DW ARRAY-1
ARRAY: DS 5@
DS 100
STACK: DS @H
END

A SKETCHCODE SOLUTION

SKETCHCODE 6502 CODE

LDX #STACK
TXS
LDA #¢
STA BIG
LDA #7F
STA SMALL
LDX=0

DO: CPX #ASIZE
BEQ ENDDO
LDA ARRAY, X
CMP SMALL
BPL TI
STA SMALL

T1: CMP BIG
BMI T2
STA BIG

T2 s INX
JMP DO

ENDDO: JSR

HALT: JMP

HALT

MAY-JUNE

31

32

BY LEE SCHNEIDER
& TODD VOROS

43"; Adverture 3, Episode 2

In our last episode, Our Hero had just returned
from his visit tothe “Old Country' of Transistoria.
Finding a little 4-legged micro-beastie nunning
about his resident location, F-Man attempts to
communicate with it...but the differences in
their coding make direct translation impossible!

F-Man CALLs in his young partner in crime-
fighting, Billy Basic, to act as interpreter. . . and
with Billy's aid he is at last able to read out the
message, which has been cleverly concealed in a
ROM built into the micro-beastie.

The message comes from Microprocessor Land —
otherwise known as the Land of the Little

People —where a nefarious villain calling himself

the Glitchmaster has stolen the Lockout Mon-
ster from its rightful owners in Clan Mclntel:
With the monster under his control, the Glitch-
master has managed to cut off all 1/O from the
land, and is even now settling down to rule it!

The Underground Resistance Movement, led by
General Wirewound, is attempting valiantly to
overcome the Glitchmaster, but it is a losing
battle. They have put out a call for help...d
CALL which Fortran Man cannot ignore!

But as usual, Fortran Man has already come up
with the solution. . . and as they branch hurried-
Iy through the®mass storage areas of 360 City, he
explains to Billy. . .

7 || = W 2. - 7 2

Don't Worry, Billy. . . | have already
computed that problem!

to have mysalf re-coded and transferred onto
set of unmarked PROMs. . .

And then you, my friend, shall simply carry

me onto the bus and transport me into

Once there, you will take me
directly to the facilities run

by Clan Mclintel, . . and there,
through a simple bootstrap
routine included in the PROM,
| shall be reconstructed!

Amazing, F-Man!

A very basic trick, Billy!
Now remember. . .

Wasting little time on null cycles, F-Man
branches out of his resident location and vectors
himself immediately towards the downtown area
of 360 City, intending to relocute himself
immediately to Microprocessor Land!

—

» _- But. .. F-Man! How will you

ever get in? Even with one of
your famous disguises to get you
past the input guards, your format
simply won't fit into a microl

And | should know. . . Micro Land
is my homeland!

Together they enter Firmware Interface Control,
and a mere hundred programming loops and a
Verify later, Billy emerges with a plain, unmarked
chip carrier under his am. . .

BUS LOADING NOW TAKING PLACE
FOR ANALOGVILLE, DMA STATION
AND MICROPROCESSOR LAND.
ALL ABOARD!

in serious trouble!

Branching towards the peripheral edges of 360
City, Billy Basic lines up amongst the rest of the
bit-stream awaiting an opportunity to get onto
the bus. . .

otherwise my poor homeland is

PEOPLE'S COMPUTERS

Once aboard the bus, the load is automatically
balanced to avoid bus oscillation or overloading.
Then the signal is given; Bily and Our Hero
(safely in PROM storage) are gated out of 360-
City towands the place where they are needed.

. -
e
Y '&i ettt
')

ik .

Heavens to Coding Form! Carrying
the one and only Fortran Man under
one arm sure makes me nervous. . .
sure hope | don't drop any bits!

ﬁ Al Lﬂllij\“&;ﬁ‘

Af =

. Micro Land 500 usec

3/: CHECK YOUR CLOCK SPEED f
%

d f’-

.Imf{‘l\“\l i,

It Is not g short trip, but the high-speed bi-
directional bus takes considerably less time than
the low-speed channels which run to other pen-
pheral lands. After a number of brief stops for
data exchange at various bus connection points,
they at last approach the Land of the Little
People. .

At last he reaches the Customs’ Gates. . . As
usual, security is very eviden! everywhere, and
especially so now that the Glitchmaster is loose!

All right; luggage inspection!
On the data table, pleass!

)

At Micro Land the bus line is terminated, and all
data is unloaded. Billy joins the lines awaiting
the usual check through the interface logic
before being allowed to enter. . . noting that the
I/O channel also ends here, with data from both
sources being shared through one interface
terminal. . .

Er.. . just some
souvenier PROMs for
my collection!

Reluctantly, Billy complies with the order. ..
noting that these are not the usual customs
agents, but members of the Elite Data Security
Guard. . . and little escapes their notice. . .

The inspector looks thoughtful for a moment, . .
then, before Billy c¢an execute another
statement.

Seeing that Our Hero is in imminent danger of
being wiped out and lost forever, Billy executes
the only option possible. . .he grabs the chip
carrier, tums, and goes into RUN state!

Waell, then, . . you shouldn't mind
if | just make sure with this
ULTRAVIOLET LIGHT, should you?

And moments later, poor Billy is under their
power, held firmly by the control lines, . .

Holy Hollerith! Now
= what kind of a mess have
: p— \ | gotten myself into???

Here he is, Commander! The case he carried fell
into the data channel. We could not find itl
And who's going
to save Micro Land

So! Another data smuggler, eh?
We have ways of dealing with your
kind, . . your transmitting days
are over! You'll be placed in HOLD

And so, firmly in custody with his line numbers
taken away, Billy Basic is led slowly towards the
HOLDing center...and a dark gloom settles
over Microprocessor Land. . .

But try as he might, little Billy Basic cannot
outrun the faster-executing data security
routines. . . and within a few cycles he is
descended upon by the guards! They struggle. . .
and in the oscillations the chip carrier does an
uncontrolled unconditional branch out of his

And somewhere, floating gently in the third
state of the channel, a little chip carrier ripples
slowly down the data stream with the currents. . .

Is this the final END for Fortran Man? Will Billy
Basic ever be free to RUN again? Will the Glitch-
master triumph in hisdomination of Micro Land?

Tune in again next issue...same time, same
memory address!

MAY-JUNE

33

BY SAM HILLS

Reader Hills® suggestions are of sufficient
length and depth that we're publishing
them as an entire article on Tiny Lan-
guages. Also in this issue is a ‘Tiny
Language Feedback’ in which readers
raise questions and comment on
suggestions previously published,

Here are some suggestions for your new
games language.

1. VARIABLE NAMES
One of the most serious shortcomings of
BASIC is its one- and two-character vari-
able names. Actual experience with a
variety of languages has shown that 8 char-
acters is the absolute minimum for read-
able programs, and sometimes even more
would be helpful. For example: which
of the following would you prefer to see
in a program you were trying to under-
stand:
S=S+N
or SCORE:= SCORE+NEW_PIECES
P77
Some languages go overboard in allowing
long variable names (such as COBOL,

34 PEOPLE'S COMPUTERS

TIRY

LEIRQURIGE

which allows up to 30 characters in a
variable name), and this eats up valuable
memory space in a hurry. The best
suggestion | have seen is to allow
unlimited-length identifiers in the source
code, but only retain the first 8 or 10
characters in the symbol table. (This is
what PASCAL does.) This allows identi-
fiers which are descriptive of what they
identify, yet it keeps memory usage
reasonable.

Another point while on the subject of
identifiers: be sure to allow for
hyphenated identifiers! | would much
rather read a program with the identifier
NUMBER_OF _PLAYERS

than NUMBEROFPLAYERS
wouldn’t you? The PASCAL compiler
which | am currently using allows the
underscore as the hyphen; this is far
superior to COBOL's minus sign! (In
COBOL:

MY—-NAME
is not the same as

MY — NAME!
The former is a single identifier, the
latter is an expression involving the
subtraction operator!)

Should consecutive hyphens, or identi-
fiers ending in hyphens, be permitted?
(Sure, YOUR_NAME _ looks awkward,
but it takes extra code in the scanner
to trap it, and it doesn’t really hurt
anything.)

2. LINE NUMBERS

Line numbers have no place in the pro-
gramming language —they should be used
ONLY to specify which line to edit when
editing the program!!!1!

TRILIC

3. STANDARD TYPES

Limiting the language to strings places an
unnecessary burden on the interpreter
when doing arithmetic. You need numeric
variables too. Whether to have both
INTEGER and REAL or simply type
NUMERIC should be up to the program-
mer; let the younger kids use NUMERIC,
and after they learn more about numbers
and begin to write bigger programs they
can advance to INTEGER and REAL, in
order to save execution time and perhaps
memaory space too.

In addition, you need type BOOLEAN
(although | prefer the FORTRAN name
LOGICAL to BOOLEAN-—more people
know about logic than about Boole!—

or maybe we should call it BINARY;

that’s what it is, really) so as to avoid
the absurdity of having to assign either
of two numbers to a variable, when we
really wanted to express a TRUE/FALSE
condition.

Since the language will be used to draw
pictures, we need the standard type
COLOR. With a black and white TVT,
COLOR would be defined as TYPE
COLOR = (BLACK, WHITE);. For
a color CRT, such as the Cromemco
DAZZLER or the COMPUCOLOR, we
could define:

TYPE COLOR = (BLACK, RED,
BLUE, GREEN, YELLOW,
MAGENTA, CYAN, WHITE)

(Some people may object to MAGENTA
and CYAN; they could substitute the
less accurate names VIOLET and AQUA
or PURPLE and BLUE_GREEN.)
Naturally, ‘arithmetic’ could be performed
on colors:

=

'\"Tfn'\aff(om- :
~ NG/ =/, (PO
O\, 2N,])d#m)
«r&w wzwm .
PNy,
;,w\rw'»x _
T(—m mm\smm
S
W 173
A\l=f \cewuera}[[ﬁ
A, NG/ 4\PND
it <d'\ﬂ-/ JEINON X
N NN NI Y |
,,1; g/ (= 1)
P, PN T

RED + GREEN— YELLOW

MAGENTA — RED—BLUE

YELLOW + BLUE—+WHITE

GREEN — GREEN—+BLACK
etc.

In a system where colors may have several
different intensities, the color constants
would represent fully saturated colors,
while pastel tints could be produced
by multiplying the appropriate constant
by a number between O and 1. For
instance, RED + 0.6 * CYAN would pro-
duce pink, while RED + 0.5 * GREEN
would produce orange! (Note that the
above system of performing ‘arithmetic’
on colors is a good way to teach kids
about primary and secondary colors,
and how they mix!)

4, CONTROL STRUCTURES
The absolute minimum set of control
structures required is:

LOOP

EXITIF ...

REPEAT;
(This will adequately take the place of
WHILE and UNTIL control structures,
although you may want to include them
anyway.)

FOR ... STEP stepsize ... NEXT;
(STEP is optional, assumed to be
+1 if omitted.)

IF...THEN or IF .. THEN
ELSE ENDIF;
ENDIF;

(ENDIF is necessary to show where the
predicate ends. The other alternative is
to require the predicate to be enclosed in
BEGIN ... END brackets. Personally, |
prefer ENDIF.)

CASE expression OF
expression: statements;
expression: statements;
ENDCASE;

Here again, ENDCASE is needed to show
where the last limb of the case ends. You
may argue that the CASE statement isn’t
really necessary. It isn't, really, but it sure
is a lot easier to understand than an awk-
ward string of ELSE IF’s!

The syntax of the CASE statement must
allow for an OTHERS limb, to prevent
cluttering up the program with an IF to
test whether or not the case expression
can be satisfied. A point of discussion:
what should happen if none of the case
labels satisfies the case, and there isn't
an OTHERS label? Should the program
just continue with the first statement
after ENDCASE, or should this cause an
error condition?

Please note that the above list of control
structures does NOT contain a single
GOTO!!! With the above set of control
structures, GOTO’s not only aren't
needed, they actually hurt matters!!1!!

The above control structures may be
nested to any depth desired, in any
combination desired. (A practical limit
might be until the stack starts to grow
down and eat into the data area or some
other constraint based on memory limits.)

The above control structures are adequate
to express any algorithm, no matter how
complex. And what's more, they force
one to think algorithmically!

5.PROCEDURE (SUBROUTINE) CALLS
Procedures must be callable by name,
and must include the ability to pass
parameters. (This is one of BASIC's
most serious shortcomings.) Arguments
should be checked for type compati-
bility, preferably before execution begins.
This would be simple in a compiler; in
an interpreter it would require a pre-
execution error-checking scan, which
would be a good idea anyway—a lot of
obscure errors (the kind that don't always
show up every time the program is run)
could be detected this way,

The language should also allow for
procedures defined external to the
program. This would include pre-defined
functions such as RANDOM (which
returns a number between 0 and its
argument) and SQUARE_ROOT (guess
what this one does?). ANSWER prints
its (STRING) argument on the terminal
and waits for a ‘yes’ or 'no’ answer,
(looping and re-prompting if anything

else is typedl), and returns the
BOOLEAN value TRUE or FALSE
depending on the answer), We'll also

want to permit user-defined subroutines
and functions, The latter would be stored
on disks in systems which have disks,
or could be loaded from tape when disks
were not available,

| imagine a typical dialogue between the
user and the monitor in a tape-based
environment would go something like
this:
NEW (Resets the load pointer to
the beginning of the free
memory.)
(User now loads tape con-
taining a subroutine he wrote
last week. This program seg-
ment is loaded into the space
following the previous one
because he didn't give a NEW
command.)
(Another subroutine, etc.)
(Check the program for
missing procedures, incom-
patible argument types,
undeclared identifiers, etc,
and if everything’s OK,
execute the program.)
(Save the whole program,
including the subroutines
loaded from the second,
third,. . .tapes on one tape,
(This’ll save a lot of time on
subsequent loads!))

LOAD

LOAD
RUN

SAVE

MAY-JUNE 35

" —

SAVE DRAW_SQUARE,

DRAW_CIRCLE
(This command saves only the
subroutines DRAW_SQUARE
and DRAW_CIRCLE on tape
(so they can be loaded onto
the end of another program,
if desired.).)

Subroutines SAVEd with a single SAVE
command would be saved as a single file;
subroutines saved with separate SAVE
commands would be saved as separate
files, just like when you save several
BASIC programs on the same tape.

6. LOCAL VARIABLES AND
SUBROUTINES

These are virtually a necessity with the
above: can you imagine the difficulty of
having to check all of the pre-recorded
subroutines that you intend to use to
make sure you haven’t used any identifier
in one of them that you want to use in
your main program????

36 PEOPLE'S COMPUTERS

7. RECURSION

Of course we want recursion! And it's not
at all difficult to implement on any pro-
cessor which uses a stack.

8. COMMENTS

We must include a method for putting
comments into a source program. The
method | like best is the one used by
PASCAL: everything enclosed between
‘comment braces’ (the symbols (* and *)
in PASCAL) is considered to be a com-
ment, and is ignored by the compiler or
interpreter, no matter where it appears in
the statement. For example:

GAMET OVER

9. INITIALIZATIONS & CONSTANTS

| have never seen a worse initialization
scheme than BASIC’s READ..DATA
construct, FORTRAN’s DATA statement
is better, but PASCAL’'s CONST declara-
tion is the best yet. In PASCAL, one
can say:

CONST (* declare constants ™)
LINE_LENGTH: = 80;
GUESS_MAX: = 10 (* limit of 10

guesses per player *) ;

In some versions of PASCAL (such as the
DEC-10 version), one can also have an

INITPROCEDURE which initializes
variables:
INITPROCEDURE;
BEGIN
BOARD [0..8, 0..8]:=0;
END;

This acts just like the FORTRAN state-
ment:
DATA BOARD /64*0./

10. MORE STANDARD TYPES

In more advanced versions of the language,
you may want to copy some of PASCAL'’s
other standard types: SET, RECORD,
POINTER and SCALAR. Sure, the little
kids won't know what to do with these
concepts, but who says that a kid has to
learn the WHOLE language in his first
lesson??? For instance, in all the
FORTRAN programs | have written, |
have never needed the COMPLEX or
DOUBLE PRECISION data types, except
for a couple of rather trivial class assign-
ments. However, my programs were never
adversely affected by the fact that those
types were available if needed.

By including these more advanced types
in the language definition, older kids (and
adult game-writers, too) can use them
when they learn how, Actually, the stand-
ard type TURTLE is just a special type
RECORD, and the standard type COLOR
is just a special type of SCALAR!

11. SUBRANGES OF ARRAYS
It would be nice to allow a subrange of an
array to be assigned into a subrange of
another array, rather than just requiring
whole arrays to be assigned. For example,
given the following declarations:

ABC: ARRAY (0..10) OF INTEGER;
DEF: ARRAY (0..10) OF INTEGER;
one could obviously write

ABC: = DEF;

to copy the entire contents of array
DEF into array ABC. It would also be
nice if it were possible to write

ABC (3..5):=DEF (7.9);
to copy elements 7 thru 9 of DEF into
elements 3 thru 5 of ABC.

12, CONCATENATION OF STRINGS
Obviously, we need a way to concatenate
strings. But do we allow

STORY;=STORY + ‘The end.’;
or do we use a standard procedure to do
this?

STORY: = JOIN (STORY, The end.’);
Whichever method is chosen should be
consistent with the method used to
implement substrings.

13. INPUT ERROR RECOVERY
Nothing is more maddening than to have a
program crash because you typed a non-
numeric character to a numeric-input
routine! Our input routines must be writ-
ten to check for the right kind of input,
and, on an error, to simply re-prompt
and try again.

A typical dialogue might go like this,
with the computer typing in upper case,
the user in lower.
DO YOU WANT TO PLAY AGAIN?
sure!
SORRY, | DON'T UNDERSTAND
SURE! PLEASE ANSWER YES
OR NO.
DO YOU WANT TO PLAY AGAIN?
yes
HOW MANY PLAYERS?
two
SORRY, | NEED A NUMBER.
HOW MANY PLAYERS?
2

(O.m.ﬂ }d;-'-u_ﬂ
A 49\
fiicns Sl
% ‘
}eﬂb{.ﬁ”w’ L3y

In systems where memory is limited, you
may want to eliminate the SORRY, . ..
message, and merely repeat the prompt,
however, under NO conditions whatso-
ever, should ANY possible input cause
the program to crash with a message like
ERROR 25 IN LINE 645; INVALID
INPUT STRING TO NUMERIC
INPUT
This will require the input function to
check what type of response is required,
and generate the appropriate re-prompt
when needed. One alternative would be
to have 3 separate input functions:
FUNCTION ANSWER: BOOLEAN;
(* only accepts YES or NO *)
FUNCTION GET_NUMBER:
NUMERIC; (* only accepts
numbers *)
FUNCTION INPUT: STRING;
(* accepts any string *)
All 3 of these functions would accept a
STRING argument which is printed as the
prompt, much like the INPUT of BASIC.

The other alternative would be to have
only one standard procedure INPUT, in
which case the interpreter would have to
check to see what type of variable the
result was being assigned to (BOOLEAN,
NUMERIC or STRING). This Ilatter
approach, while (maybe) being a little bit
harder to implement would be much
easier for young programmers to grasp.

14, AUTOMATIC STRING/NUMERIC
CONVERSION
Perhaps we should include automatic
string/numeric conversion, just like we
have automatic integer/real conversion.
For example, suppose NUM were
declared NUMERIC and STR were de-
clared STRING: It should be OK to write
STR: = ‘The answer is ' + NUM; and
NUM: = 256 — STR;

In the latter case, STR must contain the
string representation of a number. (1f not,
what should happen? Should this be a
run-time error, or should the string-to-
numeric conversion routine ignore any-
thing that isn’t a digit? Or should we just
forget the whole matter and only allow
NUMERIC to STRING conversion???)

15. DECLARATION OF VARIABLES
Should we require all variables to be de-
clared, or only those special types like
COLOR or arrays? | admit it getsto be a
hassle to have to declare every variable,
but it sure catches a lot of misspellings!
I'd much rather have to declare every-
thing than to have the compiler generate
a new variable on account of a spelling
error in a section of code which gets
executed only once in a blue moon!

16. PRETTY QUTPUT

Of course, our interpreter should have a
‘prettyprinter’ to format the source code
to highlight the block structure. (See any
of Mac Oglesby’s game listings for an
example of this.) Such a program would
make it very easy to spot errors in block
structure; for example, a missing ENDIF
or NEXT would cause the listing to fail
to close up the left margin at the final
END.

An easy way to implement this in the in-
ternal representation of the object code
without taking up a lot of memory space
with blanks is as follows:
first two bytes: line number (for
EDITING purposes ONLY11!)
3rd byte: length of this line (i.e., a

pointer to the beginning of the next
line)

4th byte: number of spaces to indent
this line in the source listing;

5th thru nth byte: the actual source
line,

(n+ 1) th byte; carriage return.

This format requires much less memaory
than storing all those leading blanks, and
it makes life much easier for the format-
ter, because it now has only to change the
indentation count, rather than actually
add or remove spaces every time the pro-
gram is edited. With this system, leading
blanks in the source statements would be
stripped off before the lines were stored,
so as not to waste memory space (and
cause extra work for the formatter).

17. MINIMUM EDITING STANDARDS
No one should ever be forced to retype
an entire line just to change one letter!
The absolute minimum set of editing com-
mands should contain the following:
Insert a new line.
Delete a line.
Delete a line, and replace it with a new
line.
Move a line, or group of lines, to a new
spot in the program.
Split a line into two lines.
Step thru a line, one character at a
time, in either direction.
Insert and delete single characters
from within a line.

LINED An editor on the DEC-10 uses
ctrl-A step forward thru a line, and
RUBOUT to delete characters. Insertion
of characters is accomplished simply by
typing the new characters in where
desired. (Ctrl-A can be used to reach the
desired point to insert.) LINED also has
some more sophisticated features, such as
ctrl-S to step thru a line until a specified
character is found, and ctrl-F to search
for a specified string of characters. How-
ever, these features aren’t really absolute-
ly necessary in a minimal-features editor.
| also suggest the use of BACKSPACE to
step backwards thru a line; LINED
doesn’t have this, but it would sure be
nice to have, and would only require
maybe a half-dozen bytes of code to im-
plement.

Also needed is a control character to step
thru the entire remainder of the line
when no further changes are to be made
on that line. LINED uses ctrl-E to step to
the end of the line and stop (for instance,

MAY-JUNE 37

"~ K AN s{‘;’ ho’
¥ U R
U [t /BN 1=y
%(f EJ W"o)'l'ﬂ\ﬁgg

°) [N e
[*"We\ M Nl

XA/ Irfp)” °f
“RU(!S\T } “Vr

j:m%;afé'mw
y\rfw n0)
(1 2Ua=\ /BN
prrt/BN =1\,

b

to add something on to the end of the
line), and ctrl-R to release the remainder
of the line (i.e., no further changes to be
made to the current line),

And we need a way to insert blank lines
into the listing to separate code dealing
with separate parts of the problem—e.g.,
the input routines, the initialization
routines, the computational routines, the
graphic routines, etc. One possible way
of doing this: typing a line number, fol-
lowed by a carriage return inserts a blank
line, while typing D followed by a line
number deletes the specified line.

18. STRING-TO-NUMERIC
CONVERSION

What happens when you try to add
‘25" + ‘26'? Does it convert the two
strings to numbers, yielding 50? Or does
it concatenate the strings, yielding
‘2625'? This is a problem only if you use
the + sign to denote string concatenation,
and you allow automatic string-to-
numeric conversion. One way out of this
dilemma would be not to allow automatic
string-to-numeric conversion, but to pro-
vide the standard function VALUE:

38 PEQOPLE'S COMPUTERS

VALUE ('25°) = 25
The other alternative would be to require
the standard function JOIN be used to
concatenate strings.

19. STANDARD FUNCTIONS AND
PROCEDURES

Several standard functions/procedures
have been mentioned already; RANDOM,
INPUT, ANSWER, SQUARE_ROOT,
VALUE, DRAW, TURN, etc. We'll also
need the trig functions SIN and COS. Do
we really need TAN? After all, TAN(X)::
= SIN(X)/COS(X). And we can also con-
struct ARCSIN and ARCCOS. We'll need
ASCII (which returns the ASCII value of
its string argument) and CHR (returns the
string specified by its ASCII-valued argu-
ment). We'll need EXP and LOG too.
(The little kids won’t understand it, but
we should have them for the older kids
and adult game-writers.) And INT, MOD,
SIGN and ABS.

If we have the standard type COLOR,
we’ll probably need some way to convert
strings to colors, and vice-versa. If the
INPUT function is required to return the
value of a color, it can loop and re-
prompt, just like with any other invalid
input, but what if string-to-color con-
version occurs somewhere else in the pro-
gram? For instance, if a string argument is
supplied to the standard procedure
DRAW?

20. DYNAMIC TYPES
Snobol and some other languages allow
dynamic types: the type of a variable is
determined by the last value assigned to
it. This would eliminate the need to pre-
declare all variables (except arrays—we
still have to specify the number of sub-
scripts, and their upper and lower
bounds). But it would lead to a lot of
errors not being detected until run-time
that could be detected at compile-time
otherwise. Consider this example: using
a variable containing a COLOR as the
condition in an IF.

XYZ:=RED;

IF XYZ THEN .
The above situation would cause a run-
time error with dynamic-variable types,
and a compile-time error with predeclared
types.

And should the type of a dynamic vari-
able be changeable once it has been
assigned, or should it remain the same for
the remainder of execution? The latter

would reduce the tendency to use the
same variable for two different, unrelated
things in different parts of the same pro-
gram.
21. STRING MATCHES AND
SUBSTITUTIONS
Of course, we'll want some sort of string
matching test—probably a BOOLEAN
function which will work analogous to
PILOT's M command: the first (string)
argument is compared with the parts of
the second argument, looking for a
match, But, unlike PILOT, we should
supply the test string in an argument,
rather than limit ourselves to the latest
input string—this permits much greater
flexibility in the programs. We'll also
want a string substitution procedure:
search a target string for a given substring,
and replace it with a given replacement
substring. These are both quite useful in a
conversational -type environment.

22. CALCULATOR MODE

When in Calculator mode, the keyboard
should respond EXACTLY like a calcu-
lator, not like BASIC which requires a
leading PRINT rather than a trailing
equals sign to do immediate calculations!

23. JOYSTICKS

In any language used for games, we’ll
want a way to input the position of joy-
sticks. This could be done with a standard
procedure which takes 3 parameters: the
first would be the number of the joystick,
and the other two would return its posi-
tion. Alternately, if RECORD is a permit-
ted type, the JOYSTICK routine could be
a FUNCTION, returning as its value a
record containing the X and Y coordin-
ates of the joystick. Yet another alterna-
tive would be to number the joysticks by
even numbers, so JOYSTICK (2*N)
would return the X-coordinate of joy-
stick N, and JOYSTICK (2*N+1) would
return its Y - coordinate.

A simple routine is shown below which
would allow a child to use a joystick to
guide a turtle over the CRT screen:

LOOP;

PLOT (WHITE, JOYSTICK (1),

JOYSTICK (2));

REPEAT;

END.
Without an EXIT IF instruction, this pro-
gram would repeat forever, until interrup-
ted by ctrl-C, continually reading the
position of the joystick and plotting a
white point (the turtle) on the CRT.

ﬂ

24, MACHINE- LANGUAGE
SUBROUTINES

We should also provide for machine-
language subroutines. Two possible ways
are: 1) use a special keyword, such as
CALL, preceding a machine-language
subroutine name, to indicate to the inter-
preter that this is a machine-language
subroutine; and 2) begin each machine-
language subroutine with a special key-
word, and call it just like any other sub-
routine in the source program, i.e., by
simply invoking it by name.
Example 1:

ABC;

CALL XYZ;

PROCEDURE ABC;

(source-language subroutine)

PROCEDURE XYZ;

(machine-language subroutine)
Example 2:

ABC;

XYZ;

PROCEDURE ABC;
(source-language subroutine)
ML PROCEDURE XYZ;
(machine-language subroutine)

Parameter passing to machine-language
subroutines will present no problem when
all procedures are computer generated,
since they can follow standard conven-
tions with the machine-language subrou-
tines. Perhaps the best procedure is to
pass a pointer (in a register, such as HL or
I1X) which points to a list of parameters.
This table would contain, for each para-
meter, its type (REAL, INTEGER,
COLOR, ARRAY of ..., etc), whether it
passes data /nto the procedure only or

both /nto and out of the procedure, a

pointer to where the variable is stored (or
where the first element is stored, if an
array or string), and, if it's a one-way
parameter, where the procedure stores
its local (changeable) copy of the variable.

If you don’t think you need both one-
way and two-way parameters, consider
the following program segment:
VAR A: INTEGER;
PROCEDURE INCREMENT
(1: INTEGER, VAR J: INTEGER);
BEGIN;

l:=1+1;
J:i=1+1;
END:
BEGIN;
INCREMENT (6, A);
PRINT (A);
END;

In the above program segment, if para-
meter | is not one-way, execution of
1:=1+1; will cause the value of the con-
stant 6 to be botched but if parameter J
is not two-way, its value will never be in-
serted in variable Alll

While the above example may seem to
have a trivial solution in this particular
case (just make the subroutine a func-
tion), the problem is not trivial for the
general case where a subroutine may have
to return MANY values! In fact, my pro-
grams usually contain several evaluative
functions which return both the desired
result and a BOOLEAN value which tells
whether or not the required operation
could be performed! Such a program seg-
ment usually looks like this:
IF EVALUATE (A, B, C) THEN. . .
ELSE WRITE (‘ERROR.. .");

Such functions return the actual value as
one of its parameters, with the function
value itself being used as an error flag
(most of the time). This form is especial-
ly useful when the evaluation is to be per-

formed on user-typed input. In such a
case, the IF is usually the EXIT of a
LOOP which, if not exited, re-prompts
and requests revised input. Remember, |
firmly believe that NO possible user input
should EVER cause a program to crash
with an obscure error message!

CONCLUSION

From the preceding, you can see that |
envision the creation of not just a TINY
language, but a full-blown, general-
purpose games and graphics language suit-
able for both tiny kids and adult game-
writers. While younger kids will not be
able to appreciate (or even understand)
some of the more advanced features of
the language, there is no reason they have
to be taught the whole language at onel
They can be started out with some of the
simpler control structures and standard
procedures, such as LOQP, IF, DRAW,
and PRINT; and later on, introduced to
the more advanced concepts.

Similarly, implementers with small sys-
tems (8K or so) may want to implement
only the more basic features of the lan-
guage, while those with larger systems
may want to implement the whole lan-
guage. Hopefully, some sort of standards
could be set up specifying which parts to
implement first, which parts second, etc.,
so that if someone advertises a program
for Level 2 DRAGONSQUEAK, for in-
stance, then ANYONE having Level 2 or
higher, will be able to run the program
with only minimal (mostly hardware-
dependent) modifications, and not have
to worry about structures, subroutines or
features omitted from his Level 4 version
(say) but present in someone else’s Level
2 version.

Also, from the above examples, one can
easily guess what my favorite language is!
And while PASCAL may or may not be
the ideal language on which to base a new
language for kids (If anyone has a better
idea, please speak up. . .that's what this
whole thing is all about), it's certainly a
good starting point. . . After all, when our
kids outgrow DRAGONSQUEAK and are
ready for something bigger and better (or
are ready to go out into the real world of
Incredible Big Monsters and Darned
Expensive Computers), what would we
rather they be using??? An anachronism
like FORTRAN? An ungainly monster
like COBOL? A kludge like BASIC??? Or
a beautiful, natural, structured language
like PASCALII!

MAY-JUNE 39

PET SOCIETIES & NEWSLETTERS

Here’s additional information about PET
users’ groups and newsletters. In the San
Francisco Bay area, those interested in
the East Bay’s SPHINX society should
contact Neil Bussey (415) 451-6364.
Those in the San Jose-San Francisco area
should call the Palo Alto Mr Calculator
store at (415) 328-0740 for details on
the next local users’ group meeting.

Great news: the newsletter from the Bay
Area groups is now available. It’s packed
with info that’s available nowhere else.
The most recent issue, for example, con-
tained articles on a simple way to add a
standard keyboard to the PET (while
retaining PET graphics), an article on
using the PET’s 8-bit parallel I/O port,
info on the PET’s character set, mgmory
map, and lots more, including announce-
ments of many PET-related products.
The two back issues are available at §.75
each; $4.50 will get the monthly news-
letter for the next six months. Send
orders to Pete Rowe, Lawrence Hall of
Science, U.C. Berkeley, Berkeley, CA
94720.

THE PET PAPER is being published by
Terry Laudereau, formerly Software
coordinator for Commodore, and Rick
Simpson, KIM Product Manager at MOS
Technology, a Commodore company. It’s
scheduled to include articles to interest

40 PEOPLE’S COMPUTERS

Photo courtesy of Visualscope.

both beginners and experts, news of User
Groups, software reviews, and hardware
how-to’s. For a year’s subscription (num-
ber of issues not specified) send $15 to
THE PET PAPER, PO Box 43, Audubon,
PA 19407,

O

SOFTWARE. O

See our PET software review under
‘Reviews’. Many distributors of PET soft-
ware are springing up. Most offer royalty
contracts for programs running from 2%
of wholesale to 20% of retail. Many deal
in both TRS-80 and PET programs. As of
early April, these companies are market-
ing software:
Don Alan Enterprises, PO Box 401,
Marlton, NJ 08053,
Peninsula School Computer Project, Peninsula
Way, Menlo Park, CA 94025.
Personal Software, POBox 136-B4,
Cambridge, MA 02183; (617) 783-0694.
Silver State Enterprises, PO Box 27111,
Lakewood, CO 80227,
The PET Paper, PO Box 43, Audubon, PA
19407.

As of early April, these companies are

gearing up to sell PET software:

Commodore, 901 California Ave, Palo Alto, CA;
(415) 326-4000. Contact Adrian Byram.

Creative Computing, PO Box 789-M,
Morristown, NJ 07960; (201) 540-0445.

Kilobaud, Peterborough, NH; (603) 924-3873.

Mind's Eye Personal Software, PO Box 354,
Palo Alto, CA 94301;(415) 326-4039. (Run
by Greg Yob, formerly of Commodore).

TEACHERS’ (& KIDS’) PET

We would like to communicate with
other schools who are wusing the
Commodore PET for educational pur-
poses. We are a small K-10 school. We
are currently teaching BASIC to some 7-
10 graders and they are using the lan-
guage to develop programs for their math-
ematics classes. We would be interested in
sharing methods and programs with other
schools who are attempting the same sort
of thing.

Charles Ebert

The Midwestern Academy of
the New Church

73 Park Drive

Glenview, IL 60025 O

O

LISTING CONVENTIONS O

Program listings employ the following
conventions to represent characters that
are difficult to print on a standard printer:
Whenever square brackets appear in the
listing, neither the brackets nor the text
they enclose should be typed literally.
Instead, the text between the brackets
should be translated to keystrokes. For
example, [CLR] means type the CLR
key, [3 DOWN] means [DOWN, DOWN,
DOWN] ie press the first CRSR key three
times.

500 READ DS$,1SS,LUS,LDS RUS ADS,LAS,LMS RAS RMS,AGS

540 DATA 'y neitign mgu ivuinivgn wpdl ign jinpieg

515 23=32768:Z4=40

520 X0=5:X1=35

530 Y0=2:¥1=19

540 LO=INT{{YO+Y1)/2)-2:L1=L0+4

550 RO=LO:R1=L1:DM=0

560 PRINT[CLR]"; PONG for the PET O
570 Y2=Y1+1:22=99

580 FORX2=X0TOX1:GOSUB90O:NEXTX2 .

590 Y2=Y0-1:22=100

600 FORX2=X0TOX1:GOSUB90O:NEXTX2

620 X2=X:¥Y2=Y

630 XP=X2:YP=Y2

640 GOSUB3000:GOSUB3100

B850 LN=0:RN=0

660 DX=1.5:DY=0

670 PRINT"[HOME]";:FORI=1TOY1+2:PRIMT"[DOWN]";:NEXTI

680 PRINT"SPEED INCREASE, DECREASE = ";IS$;DS$

690 PRINT'LEFT UP, DOWN, AUTO, MANUAL = ';LUS;LDS;LAS;LMS

700 PRINT"RIGHT UP, DOWN, AUTO. MANUAL = ";RUS;RDS;RAS;RMS

710 PRINT"RESTART POINT = ";AGS;

790 LA=0:RA=0

890 GOTO2400

900 REM PUT Z2 AT (X2,Y2) .
910 POKEZ4°Y2+X2+Z3,Z2 1230 IF{Y<YO)OR(Y>Y1)GOTO1040
920 RETURN 1240 IF(Y<LO-.75)OR(Y>L1+.75)GOTO2200
950 REM WAIT TJ SEC 1230 GOTO1600

960 TJ=TI+80"TJ 1300 REM AT RIGHT

965 IFTIKTJGOTO965 1310 Y=Y-DY*(X-X1)/DX

970 RETURN 1320 DX=-DX:X=X1:2B=225

1000 REM TOP OF LOOP 1330 IF(Y<YO)OR(Y>Y1)GOTO1040
1005 ZB=81:REM STANDARD BALL 1340 IF(Y<RO-.75)OR(Y>R1+.75)GOT02300
1010 XX=X:YY=Y:X=X+DX:Y=Y+DY 1390 GOTO1600

1020 IFX<{X0GOTO1200 1400 REM AT TOP

1030 IFX>X1GOTO1300 1410 X=X-DX-(Y¥-YO)/DY

1040 IFY<YOGOTO 1400 1420 DY=-DY:¥Y=Y0:ZB=226

1050 IFY>Y1GOTO1500 1430 GOTO1530

1060 REM TEST FOR KEY HIT 1500 REM AT BOTTOM

1070 GETCS!IFLEN(CS)>0GOTO2000 1510 X=X-DX*(Y-Y1)/DY

1080 IFLAANDDX<OGOTO1800 1520 DY=-DY:¥Y=Y1:ZB=98

1090 IFRAANDDX>0GOTO1900 1530 IFX<XOTIENX=X0

1100 REM DISPLAY AT(X.Y) 1540 IFX>X 1THENX=X1

1120 XQ=XP:YQ=YP 1550 GOTO1060

1130 XP=INT(X):YP=INT(Y) 1600 REM MAKE BOUNCE FUNNY
1140 ZQ=Z4*YP+XP+Z3 1610 NB=NB+1:IFNB<5GOTO 1040
1170 IFZR<>ZQTHENPOKEZR,32:ZR=ZAQ 1630 DN=SAR(DX*DX+DY-DY)

1180 POKEZQ,ZB 1640 DX=DX"(1.5*RND(1)+.5)
1190 GOTO 1000 1644 AD=ARS(DY/DX)

1200 REM AT LEFT 1645 IFAD>20RADC 2 THENDY=DX*(RND(1)+.5)
1210 Y=Y-DY*(X-X0)/DX 1650 DY=DY*((2-5/NB)*RND(1)+.7)
1220 DX=-DX:X=X0:ZB=97 1660 DD=DD 'SQA(DX*DX+DY* DY)

1670 DX=DX*DD
1680 DY=DY DD
1690 GOTO1040
1800 REM AUTO LFFT

To indicate motion in this photo we modified the program so the ball, shown
as a white dot would leave a trail of 'hollow’ dots. The “trail’ is not part of the
program listed here,

Martin Cohen, of Technology Service Corpora-
tion in Santa Monica, CA, has written a fine
PONG game for the PET. The ball actually
squashes when it hits a paddle or the “floor’ or
‘ceiling’ of the game room. You can increase or
decrease the speed of the game to suit yourself.
Since each paddle may be set either to automa-
tic or manual mode you can vary the number of
players from 0 to 2. Thanks, Martin!

1810 IFY<LOTHENDM=~2:GOSUB3000:GOTO1100

1820 IFY>L1THENDM=2:GOSUB3000:GOTO1100

1830 GOTO1100

1900 REM AUTO RIGHT

1910 IFY<ROTHENDM=-2:GOSUB3100:GOT01100

1920 IFY>R1THENDM=2:GOSUB3100:GOTO1100

1930 GOTO1100

2000 REM KEY HIT

2030 IFCS=DSSTHENDX=DX/1.5:DY=DY/1.5:GOTO1100

2040 IFCS=ISSTHENDX=DX"1.5:0Y=DY*1.5:GOTO1100

2050 IFC$=RUSTHENDM=-3:GOSUB3100:GOTO1100

2060 IFC$=ROSTHENDM=3:GOSUB3100:GOTO1100

2070 IFCS=LUSTHENDM=-3:GOSUB3000:GOTO1100

2080 IFCS=LDSTHENDM=3:GOSUB3000:GOTO1100

2090 IFCS=RASTHENRA=1:GOTO1100

2095 IFCS=RMSTHENAA=0:GOTO1100

2100 IFCS=LASTHENLA=1:GOTO1100

2105 IFCS=LMSTHENLA=0:GOTO1100

2110 IFCS=AGSGOT02400

2190 GOTO1100

2200 REM PASSED LEFT

2210 RN=RN+1

2220 GOTO2350

2300 REM PASSED RIGHT

2310 LN=LN+1

2350 REM SHOW WHERE SCORED

2360 X2=XP:Y2=YP:Z2=32:GOSUB900

2370 X2=INT(X):Y2=INT(Y):Z2=42:GOSUB90Q:TJ=TI+60

2380 IFTIKTJGOTO2380

2390 Z2=32:GOSUB900:GOTO2420

2400 REM A SCORE - DISPLAY AND START A POINT

2410 X2=XP:Y2=YP:Z2=32:GOSUB900

2420 PRINT'[HOME]SCORE: LEFT = "+STRS(LN)+",
RIGHT = "+STRS(RN)+"[3 SPACE]";

2425 DD=SQR(DX'DX+DY DY)

2440 R=RND(1):5=RND(1)+.5:DY=RND(1)

2450 IFR>.5THENX=X0:DX=S:Y=(L0O+L1)/2

2460 IFR(=.5THENX=X1:DX=-S:Y=(RO+R1)/2

2470 XP=INT(X):YP=INT(Y):

2480 ZB=81

2490 DD=DD/SQR(DX*DX+DY*DY)

2500 DX=DX*DD:DY=DY*DD

2510 NB=0

2520 ZR=999

2540 TJ=1:GOSUB950

2550 X2=XP:Y2=YP:Z22=ZB:GOSUB900

2560 TJ=1:GOSUB950

2590 GOTO1100

3000 REM MOVE LEFT PADDLE DM

3010 X2=X0-1:ZP=103

3020 YA=LO:YB=L1:GOSUB3200

3030 LO=YA:L1=YB

3040 RETURN

3100 REM MOVE RIGHT PADDLE DM

3110 X2=X1+1:ZP=101

3120 YA=RO:YB=R1:GOSUB3200

3130 RO=YA:R1=YB

3140 RETURN

3200 REM MOVE A PADDLE

3210 Z2=32:Y8z24"YA+X2+23:Y9=Y8+Z4"(YB-YA)

3220 FORY2=YBTOYISTEPZ4:POKEY2 Z2:NEXTY2

3230 YA=YA+DM:YB=YB+DM

3240 IFYACYOTHENYB=YB+YO0-YA:YA=YO

3250 IFYB>Y1THENYA=YA+Y1-YB:YB=Y1

3260 Z2=ZP:Y8=Z4 YA+X2+Z3:Y9=Y8+Z4"(YB-YA)

3270 FORY2:=YBTOY9STEPZ4:POKEY2 Z2:NEXTY2

3280 RETURN

9000 REM LINEARITY CHECK

9010 PRINT"[CLR, RVS]™;

9020 FORI=1T0999

9030 PRINT"[shiftLBRACK]";

9040 NEXTI

9050 GOTO9050

MAY-JUNE 41

O @ ° KALEIDOSCOPE

Kaleidoscope is a simple program that
runs continuously while drawing interest-
ing patterns on the screen of a Commo-
dore PET computer. It is adapted from a
program written by Rod Holt on a differ-
ent computer.

You will probably want to try each of the
two variations of the program. As origin-
ally written, you may see ‘glitches’ flash-
ing on the screen while the program
executes. You can get rid of these
‘glitches’” with a variation of this program
provided by Larry Tesler. By replacing
the POKEs with GOSUBs, as indicated,
the program will slow down considerably,
but the picture will be cleaner. I person-
ally prefer the visual effects of motion
that appear in the original, faster version.

You will notice that there are no PRINT
statements in the program: instead, the
program POKEs the ASCII equivalent of
the graphic characters into the area of

O

Tiny GRAPHICS

My children have enjoyed running the
attached graphic programs on my PET. |
am offering them in the hope others may
enjoy them.

M C Hofheinz
Stockton, CA

42 PEOPLE'S COMPUTERS

4z
5 PRINT "[CLR]"
6C

7

8 CL(7)=ASC(" "

13 CL(6)=ASC(":")

30 FOR 1=1 TO 19
40 FOR J=0 TO 19
50 K=l+d

140 NEXT J
150 NEXT |
160 NEXT W
170 GOTO 20

2 GOTO 4

C=0:C=0:20=59456:ZW=32

L(0)}=ASC(" ")+128
CL(1)=ASC("[?]")-64

9 CL(3)=ASC("[@]")-128
10 CL{4)=ASC("[shiltlLBRACK]")-128
11 CL(5)=ASC("[shiltRBRACK]")-128
12 CL(2)=ASC("[&]")-64 -

18 N1=32768: N2=40: N3=.625: N4=39.9399
20 FOR W=3 TO 50

60 C=CL((J*3/(1+3)+I*W/12) AND 7)

70 Y1=N1+«N2*INT(N3"I)

80 Y2=N1+N2*INT(N3*K)

90 Y3=N1+N2*INT(N3*(N4-1))

100 Y4=N1+N2*INT(N3*(N4-K))

110 POKEI+Y2,C: POKEK+Y1,C: POKEN2-1+Y4,C
120 POKEN2-K+Y3,C: POKEK+Y3,C: POKEN2-1+Y2,C
130 POKEI+Y4,C: POKEN2-K+Y1,C

Changes that prevent twinkling, but slow down display...

3 WAITZO ZW:WAITZQ,2W ZW:POKEZC,C:RETURN

110 ZC=1+Y2:GOSUB3: ZC=K+Y1:GOSUB3: ZC=N2-1+Y4:GOSUB3
120 ZC=N2-K+Y3:GOSUBZ: ZC=K+Y3:GOSUB3: ZC=N2-1+Y2:GOSUB3
130 ZC=1+Y4.GOSUBG: ZC=MN2-K+Y1:GOSUB3

memory where the PET stores its current
picture display. This area starts at mem-
ory location 32768. The first 40 locations
of this area are for the first row of char-
acters on the screen. The next 40 loca-
tions are for the next row, and so on.

The built-in function, ASC, does not
quite give you the numbers you need for
doing POKEs instead of PRINTS. If you
are interested in experimenting with
different graphics characters, the follow-
ing statement, when executed, will tell
you the integer that needs to be added or
subtracted from the value ASC computes:

[CLR] ? —ASC(*“x")+PEEK (32775)
To assure that this statement will work,
be sure not to include any spaces after
you press the CLR key. Try different
graphics characters in place of the x
above. You are now prepared to change

A 10 POKE (32768 + 1000* RND(1)),
255*RND(1)
20 GOTO 10
(Or substitute any number from 1 to
265 for the expression after the comma.)

B 10 FOR X=1 10 255
20 FOR Y=1 to 1000
30 POKE (32, 767+Y), X
40 NEXT Y
50 NEXT X

lines 6-13 with your own graphics charac-
ters.

If you want to change the shapes of the

patterns created, replace
“IJ*3/(1+3)+1*W/12”

in line 60 with anything you please, and

see what happens.

If you are interested in experimenting fur-
ther, you can change PET’s character set
by executing POKE 59468, 14, To restore
the regular character set, POKE 59468,12.
While the alternate character set is in
effect, the characters generated by
shift—) and shift— < make for interesting
kaleidoscope patterns.

Dave Offen
Menlo Park, CA

O

C 20 FOR X=1to0 255

30 PRINT X: POKE (32767+X), X
40 NEXT X
(Best to hold RVS during this one)

D 20 FOR Y=1 to 1000

30 POKE (32767+Y); INT (Y/4+1)
40 NEXT Y

E Add to any of the above

5 POKE 32768, 14

HAM PET OWNERS

Would you like to take part in experi-
ments to transmit programs, etc by Ham
Radio? Please get in touch with the
undersigned. To arrange a schedule give
frequency, time, date, and call letters and
perhaps a telephone number.

Orin K Batesole—W6HIE
150 Shady Lane

Walnut Creek, CA 94596
Telephone (415) 934-8661

®o O.
PET PRINTERS

A rumor of interest to all PET owners
who have access to a Versatec printer: We
hear that for $100 Versatec (Santa Clara,
CA) will sell a Versatec printer/PET
inter face.

Commodore’s $595 printer will allow you
to print out graphic characters as they
appear on the screen. It sure will be nice
to be able to print graphics, but listings
will still be confusing if a graphic character
prints when cursor control is done in
print strings. A sample of the print quality
is shown below.

ABCLEFGHITELMHOPGRSTUVHE,
ABCDEFGHITELMHNOPORSTUY R
ARCDEFGHITJKLMNOPGRSTUVEEX

O o
oA o

1) A bug got into our last version: lines

7000 and 7040 should read
7000 PRINT “[CLR, DOWN] *
7040 PRINT “[HOME] ";: NEW

2) A number of readers found line 5535
puzzling:

65635 : : V=C >BY: IF V=RV GOTO 5545
The leading colons are to force an inden-
tation to make structure clearer. ‘C>BY’
is a Boolean condition. If C is greater
than BY then the expression is TRUE,
and so evaluates to —1: therefore V is set

DRAW UPDATE

equal to —1. If C is not greater than BY,

then the expression is false, and evaluates
to 0: so V is set equal to 0. In the second
command of the line, V is compared to
RV in the usual manner.

a

REVIEW'S

PET SOFTWARE REVIEW

Don Alan Enterprises

P.0O. Box 401, Marlton, NJ 08053
10 programs on a cassette, $19.95

Don Alan Enterprises is selling a PET cas-
sette containing ten programs for $19.935.
I am generally disappointed with the
quality of these programs. However, since
there is not yet available a wide selection
of programs for the PET, there undoubt-
edly will be those of you who would
rather play with these programs, than
stare at the ‘7167 BYTES FREE’ message
displayed before you on the screen.

If you’re a computer hobbyist who is just
learning to program, and you are un-
familiar with the capabilities of small
computers, you might appreciate this
product. Most of the programs included
are short. They provide readable examples
of working programs writtgn in the PET’s
particular dialect of BASIC.

Among the supplied programs are two
requiring no intervention once they are
started, One program transforms the com-
puter into a digital clock with a large
numerical display. The other, called
WORM, draws a delightful criss-crossed
maze of lines all over PET’s display screen.

The remaining eight programs on the tape
are interactive games. I find none of the
games particularly inspiring. In addition,
the authors do not devote nearly enough
attention to the needs of the game-player.
To me, this is a serious flaw because an
important test of any good computer
game is that it should be easy to interact
with and pleasant to use.

In particular, the math practice program
has no facility for letting you determine
the difficulty level of the problems. How
much value can there be in practicing on
problems that may be either too easy or
too difficult for you? Also, when you
provide an invalid response to the initial
question, the program prints out a con-
fused and inappropriate message. This
indicates a sloppy programming job.

I found shortcomings with some of the
other programs as well. Some of the
games unnecessarily require the player to
press the return key after each single-
letter response. Why should the program-
mer require that you press two keys when
one is adequate? Other games would be
considerably improved if they were to
automatically repeat when a key is held
down, rather than requiring twenty or
thirty keystrokes on the same key.

The creators of this package of programs
advertise that their product should be
used to ‘house-break your PET’. Unfor-
tunately, you may discover that if you
have an interest in moving beyond the
toilet training stage, the Don Alan pro-
grams are not for you.

Reviewed by Dave Offen
Computer Software Consultant
Menlo Park, CA

ACACACAOCAOADACACACAOACACACAO

MAY-JUNE 43

STIMULATING SIMULATIONS
60 pp, $5.00

THE DEVIL'S DUNGEON

15 pp, $3.50

by C William Engel

Box 16612, Tampa, FL 33687

At school or at home, what do you do
with your personal computer? Why, you
write programs to make it do things, of
course. But what things? One approach is
to tackle problems directly related to
school or work. You can learn a powerful
lot of programming skills by developing
software to multiply matrices or balanc-
ing end-of-month checking account
statements. But this applications
approach is less than edifying to the
developing programmer who lacks mean-
ingful applications suitable to his/her
level of skill. An often overlooked alter-
native is the game-simulation. If the
objective is leaming to program, why not
have fun doing it? There are lots of game-
simulations available to be copied. 101
Computer Games, edited by David Ahl,
comes to mind. But this is a canned
approach which emphasizes the recrea-
tional aspect of personal computing
rather than skill development. C William
Engel, in writing Stimulating Simulations
has done a nice job of getting away from
the copy-a-game approach. In this book-
let, he offers ten game-simulations of
varying difficulty. Judging from the
accompanying scenarios, they are all
exceedingly interesting. Dr Engel’s con-
tribution is to fully document each pro-
gram with a scenario, a sample tun, a
very readable flow chart, a listing, and
suggestions for minor and major changes.
So what’s new? Well, these programs are
understandable, They can be decoded and
modified by the learner-programmer.
They can be rewritten for different sys-
tems or to do different things. In short,
they teach!

The Devil’s Dungeon is a more sophisti-
cated game-simulation of the same genre
as Stimulating Simulations. The game
seems to be a variation of Caves. The
objective of the game is to obtain a maxi-
mum amount of gold from the dungeon
in the face of many hazards including
monsters, and poisonous gas. It appears
to have a high potential for interest and
challenge. 1 can’t say the Devil’s Dungeon
is in the same league as Star Trek, nor can
I say that it isn’t. What makes a computer
game popular is often obscure. A reading
of the scenario, however, and the high

44 PEOPLE'S COMPUTERS

q-————'_———_'_——_—

quality documentation more than war-
rants putting the Devil’s Dungeon high on
your things-to-try list.

Reviewed by Peter S Grimes
Curriculum Supervisor
San Jose Unified School District

Personal Software, (PO Box 136-B4,
Cambridge MA 02183) offers Stimulating
Simulations on tape with Engel’s book
for $14.95. On one side of the tape are
PET programs, on the other side TRS-80
programs.

ACACACACATACACACACACAOACACAD

THE LITTLE BOOK OF
BASIC STYLE

by John M Nevison
Addison-Wesley, 1978
147 pp, $5.95

There are numerous books out on pro-
gramming style. Why should you read this
one? Two reasons. One, this book is
about style in BASIC programming. This
is somewhat unique: most other books on
style deal with more hospitable languages.
Two, this book is specific. While most of
the rules are generalities, the text is not.
The author makes specific suggestions—
indent this many spaces, put blank lines
here —and so on.

I have one complaint—I don’t like the
author’s programming style. A number
of his suggestions do not agree with my
(admittedly prejudiced) notions of style.
However, you may not think so. As the
author puts it, “The person who cares
enough about a program’s style to argue
with these rules probably has little need
of them. On the other hand, an argument
against a rule should be advanced for the
same reason the rule itself was suggested:
because there is a better way to make the
program read.’ 1 agree.

Reviewed by Eryk Vershen.
ACACAOACACACACADAOACACAOAOAD

8080A/8085: ASSEMBLY LANGUAGE
PROGRAMMING

by Lance A Leventhal

Osbome & Associates, Inc., 1978

400 pp, §7.50

This book comes as highly recommended
as did Osbome and Associates” An
Introduction to Microcomputers, Volume
0: The Beginner's Book (see Tom
Williams® review in the March-April
1978 issue).

80804/8085 is written in the same
style as Volume 0, and it is everything
I had hoped for in an instructional text
on assembly language, as well as on how
to use assembly language to program a
microcomputer. It begins with a brief
discussion of the meaning of instructions
—the programming problem (program
understandability, debuggability, entry
speed, readability, and length), using
octal versus hexidecimal, instruction code
mnemonics, and advantages and dis-
advantages of high-level (as well as
assembly) language. Next, there is a
‘basic-literacy” discussion of assemblers
and loaders, followed by thorough and
concise definitions, descriptions, and
examples of each instruction of the
entire 8080A and 8085 instruction sets.

8080A /8085 goes one step further than
Volume (0 in that not only is it a primer,
in the classical sense, full of examples
and samples, but it is also an excellent
reference manual, with sample macros,
programs (one’s complement, 8- and
16-bit addition/subtraction, word dis/
assembly, sum of squares, and more),
simple program loops, character-coded
data, code conversion, arithmetic
problems, tables and lists, subroutines,
1/O devices and programs, interrupts—
the list goes on and on. Chapters 14 and
15, on debugging, testing, documentation,
and re-design, are, in themselves, worth
the price of the book.

If you have (or plan to have) an 8080
microprocessor, and you want to program
it in assembly language, 80804/8085
is written especially for you. In short,
the first twelve chapters concentrate on
the writing of short programs; the rest
describes how to formulate tasks as
programs and how to put short programs
together to form a working system.

Reviewed by Vicki Parish. O
ACACACACAOACACACACACAOACADAD

During a college computer programming
course about 12 years ago, I wrote a very
primitive Blackjack routine in PIL/L,
a Basic-like language for a 360/50.
Taking over 180 lines, it dealt the cards
from a deck of 52, allowed the player
to draw or stand, drew cards for the
‘dealer’, and then determined the winner.
Over 10 years have passed, but 1 never
forgot the hours of pleasure, sweating
over a hot terminal while that magnificent
beast sat in air-conditioned comfort
down the hall!

Then about a year ago, | discovered that
computers had shrunk both in size and
price, and I started planning for one'of
my own (actually, it began as a digital
clock for the office, but things got a
little out of hand!). I settled on the
8080-A ‘front panel’ by Morrow’s
Micro-S, working into 8K of RAM
with a VDM-1 and Morrow’s cassette
board handling the 1/O. Incidentally,
I was very impressed with the quality
and the performance of George Morrow’s
boards—they go together easily, work
reliably, and I have only begun to tap
their capabilities.

After 4 months of planning, building,
and debugging hardware, I started playing
with machine language and getting used
to the 8080’s instruction set by writing
short subroutines. Eventually 1 came
across Denver Tiny Basic by Fred Greeb
(Dr. Dobb's Journal, March 76). The
listing was in octal (essential, since 1 only
had the octal pad provided by the front

BY MILAN CHEPKO

panel at the time), started at 000 000 (so
no extensive re-write was needed), and
included such features as a random
number generator, multiple statements
per line, and single-dimensioned variables.
All this in less than 3K! Even with the
VDM drver and some I/O routines,
I still have over 4K left for programs
in Tiny Basic.

All the Blackjack programs I've come
across seem to require large amounts of
memory, and generally leave out one
or more functions that make the real
game so interesting. This version allows
splitting pairs and doubling-down,
handles all betting, and even includes a
small subroutine that lets the player see
how many cards of each value remain
in the shoe (equivalent to what players
call ‘casing the deck’). The listing totals
138 lines and just under 3400 byfes.

Most of the subroutines are self-explana-
tory, but there are a few features that
could cause some confusion. First, 1
found that nothing is gained by
displaying the suits (spade, heart,
diamond, club) since they don’t affect
the point value of the cards. Therefore
each deck contains 4 aces, 4 deuces. o
4 kings. Lines 22—27 set up a ‘shoe
containing the desired number of decks
by establishing array S(), where_e_af:h
of the 13 elements contains an initial
number of cards equal to 4 times the
number of decks used. A card selection
routine at line 160 then genesates randm_n
numbers from 1 to 13, checks to see if

any cards of that type remain in the shf:e,
subtracts one, and retumns to the calling
program.

The insurance routine (line 70) is
activated when the dealer shows an ace
at the beginning of play. This is an
opportunity to protect your bet against
the chance of the dealer having a Blacl_c-
jack, although many players consider this
to be a bad bet in general.

Standing, drawing, and doubling-down
(doubling your initial bet in exchange
for only drawing one card) are quite
straightforward, but splitting pairs can
get a little tricky. Basically (no pun
intended!), you are turning one hand
of 2 cards into two hands of one card
each, then playing each hand separatel}r
from that point on. The program Is
written to allow ‘nesting' hands 10 deep
but 1 doubt you will ever have more Phan
3 or 4 hands in play. To simplify things,
I arranged to play the highest-numbered
hand to completion first, then the next-
lower hand, until all hands are completed
and it becomes the dealer’s turn to draw.
Since you can have another pair occur
after splitting one pair, 1 had to use a
flag to let the ‘dealer’ know when a hand
was completed and prevent re-playing it.
Therefore, at the end of each hand, 1000
is added to the total and stored for use
later. The dealer knows that a hand is
finished if the total exceeds 1000. This
flag is subtracted to re-create the actual
total for that hand.

MAY-JUNE 45

47

85 0109 I#E
I¥Z OLOD OL > I “L+=l LT O=1:000+1=tH)d ZEL “(H)d Y1 0001 + |810} 531018
o=r 0w 00L=L 0={Z)d 41 teH 41 Z=1 41 LT=L I I} :2uIN0sGNs puRS
(6)S ".8.6, Hd BET ort 8NSO9 OEL
(8)S',.5.,8,, td 8E 061 BNSOD (X=(1)2i1+1=1 IZ1
(L)S"Sils Hd LEZ 091 GNSOD (L)B.Z=(H)8 (1)B—M=M 0ZI ‘BupNoIgNS UMap-aIqnag
(ELIS+ZLIS+(LLIS+(0L]S".$.04.. “\» '(9)8 °.5.9, Hd 9ET ‘wiesboud Buy|ea ¥8 0LOD ¥il %
(5)$ ",5.5. Hd SET O} swinlas ualy pue 061 OLOD 5,./0348N8. ", #Hd IT<LH ELL *(Aigssaosu 4 @103 s
(118 'uS3OVa " oo "(¥)S "uS.b.Hd PEZ SPUODES [RIBASS JOj SHEM OFi 8NSOD il 34l Amdsip pjnod) 3sNE., 2
(E)S .8, Hd EET — 8018 U] 18] p1ed jo adAl 061 8NSO9:X=(12:L+1=1 LiL BUIWLL@SP O (2103 S818ND[ED -
2)8°.8.2. Hd TELT youn jo sequinu sARjdsip 09l 8NS09 0L *piud @ sAejdsip pue $133195 m
Hdt., ‘NIVWIH SOHYD 383HL, Hd 'SHT0 0E2 0P w0 950109 vOL :aU(in0Iqns Mei(y
QN3:LIIINOA HO4 LNIAIJOV, NV, 8d £2Z "puey puodas sAjd VAL ‘(LIV
LIONVHHY AT8VE0Hd TTIM VIJYN IHL. Bd ZE2 0={Z)2HZID=(L¥:(L18=(H}8 £0L 01Ul PIEI PUODAS SINOLI " (H)d
N3 0=< M 41:M L, $ IAVH NOA,. Hd 'SHT0 022 an3 ZOL 0LOD 0004 < (H)d 41 *i+H=H 201 uj Jied dy) JO PUED 1844} SRI0IS
Z61 OLODM!,, $ IAYH NOA " * 138071 NOA. Hd Z1E 0=(112:(1)D=(H)d: (L1B—M=M 00l :aupnosans Hids
Z6L OLOD:M?,. $ IAYHNOA " 'IINIMNOA. Hd LI ¥8 010D +,, "AHHOS, Hd |6
Z61 0OL0D:M .. § IAVH NOA " 'HINNIM ON, Hd 0I2 001 0LOD Z=1 I (Z2)0=(1)2 I =0 4l 06
ZIZ 0109 (L)W >(H)d 41 £0Z 0ZL 0L0D Z=1 412=041 68
LIZ OLOD (H)BeZ+M=M (LIW< (H)d 21 802 082 0LOD 0=(€)2 1 ¥=0 41 B8
042 OLOO {(H)B+M=M (L)W=(H]d 41 80Z 0Ll OLOD 1=0 41 (B
LLZ OLODHHIBZ+M=M IZ < (LW dI $OZ 0£1 0L0D 0=0 4I:O NI S8
ZIZOLOD IT<(H)d 41 €02 1,08V0, Hd ¥8
Z1Z 0LOD 00L=(})W 41 Z0Z 030 3SVD=¥ ~Hd E8
LIZ OLOD:Z/(L)HS+M=M 00L=(H)d 41 102 ~HIVd LINdS=E MvHO=1 .Hd I8
01Z OLOD:(L18+M=M 001 =(L)W 21 00L=(H)d 41 002 LNMOQ 378n00=Z ONV1S=0.Hd I8
(H)d ! AAYH NOA,, Hd 861 ,7 "S3DI0HD HNOA YV 3HIH. Hd ‘Hd 2= 08 suopdo siehe|d
00Z OLOD:,. HOVINOY I8 IAYH NOA. Hd 00L=(H)d I L6l LZ OLODIM WS SAVH NOA, bd L4
(LW, SYH H3TV3d., Bd 961 ZI(LBE+MeM O < L dI 9L
£61 0L0D:, NOVINIVIBSYH HITY30,.Hd001=(L)N A1 S6L LIIOVINOYIS SYH H3TV3A, Md SL
H',# ONYH, Hd ‘dd v6l 08010901 > (BIW 41 ¥
£z 0L09D 0 > [H)d 41 ‘0001— (Hid=(H)d €61 puBy oea Joy 08 OLOD Si={(ZIN 41 EL
L+H=H ZBl 1BUUIM SBUILUa1B(E ZIE— M=MO <1 I SENIfh=d LL
O=H ‘L=(LiN 061 :BULNDIGNS 3507 - UM {ON=0 'FONVHNSNI HO: L1910 ANY 3dAL, Hd 'Hd OL 2uBN0IGNS BoURINAUY|
pil OLOD 081 08 0LODO0<d 1 89
0G4 BNSOD X=(1)D *b+1=1 BLL 080109GL > (LW 4l 99 ‘eunnosgng
091 8NS09 8BLL 080L0D 1<H4dl S§9 asuRinsuj sassedAg
06l OLOD 9L< LAl LLL 051 8NS09 {(Z)V=(Z10 T=1I ¥9
06l OLOD 001=L0=(E)D I IZ=L 41 9Ll 051 8NS0D :(Hv=(1]1D €9
Li,=1¥10L, Hd SLL . 'ONIMOTI04 3HL IAVH NOA. Hd Hd 28
oyl 8NSOD vLL 151 8NSOD ‘=1 19
0SL 8NSOD Z=1 €Ll !, SMOHS HITVIA. Hd (1IN=(1)D 65 ‘spJed siedeid yog pue :
041 BNSOD H1=1 &Ll "9 SPOBIXa (€101 [|Iun Hi. 3 ONVH. Hd'SH1D 85 PiB21sy siaeep sAvjdsiq
[ZIW=(2)D :(Lw=(1)D LLL J8|Rap 40} PR SMEI(] X=(2)¥ (5 “aaAud Jo} o
L ONIMOTT104 3HL SYH HITV3A, Hd 'SH1D 0L iaulinolgns Jejeag 091 BNSOD 95 PJud puz smelq
134 S9I X=(L)V 8 4
Gi=X L=X 41 v9i 091 8NSOD :X=(Z)W ES
1= N=N: L= (X)S=(X]S €81 091 8NSOD :X={L)W 1S “sahe|d o} Buo “
091 0LOD 0=(X)S 41 291 ‘Boys U| 18] ale adAl eyl o 091 8NSOD 0§ '49[EEp 10} SPIEd 7 sMRIQ
091 OLODEL< X 41 191 spieo AR 4} 838 01 584D b=H (L)8—M=M E¥ :
1+000L/(0)ONY=X 091 "Si9qunu WOPUE) SAIBIAUAD obOLODZ (LB 4l TP
13H 5, ONIN. HA E1=(11D 41§51 0ZZ 0LOD0=(LI8 41 :(L)ENI ¢ AN3I O
134 :,N33ND,, Hd Ti= ¥a1 LAWNWININ Z$) 138 HNOA 30Vd,. Hd Hd OF sa0b 'Q Jj1—18q sandu|
13H 2,0V Hd Li=(ND 4] €81 LE 0LOD 0=(1)d :0=(1)D :0=(118 ZE
134 (N0 Hd L >)21 28l O OLOD 0L < | J1:Lel=l IE q
134 5,010 4O)30V, Hd SL=(11D 41 ISL 0=d4 ‘0=] OF
Yup woedHd 081 “BUpN0IANS 1utd $Z 0L0D 5. 3744NHS LSNW,, Hd 0Z >N I L2 l—
Lyl OLOD 6vl O.28=N 92 “BOys ay) NS U
Ol OLOD :L=(r)2 Si=Irj0 41 8rl SZOLODEL>1 1 :Qet=(11S 1+=I SZ SPJED §38] JO 0T UBYM m
L3H 0=(r)D 41 f4r=l Lyl 0=1 vz
LIHEZZ > L 41:0= Skl ‘| O} || Woiy paanpas aq ued anl g2
vl 0LOD0l+Ll=1LpPL> (1D 41 bl a0y Aug ji 3as O1 533319 £, 30HS IHL NI SHD30 ANV MOH., Hd:M NI 12 ‘spaeo JO 20us Ay dn 5185
Ll OLOD HMD+HI=L L > (M2 41 Ewl ‘| spaedxa 1 ' pied 1, AAYH NOA OO HSYD HONW MOH,, Hd 02 ‘ljonyueg sandu)
iFl OLOD ili+1=18i=(N13 41 T¥i yaua 10§ BnjeA 1u10d SPRY ol OLOD H > | 31 H{0)ONH=X :L+l=] 8i >
Spl OLOD 0=(M)D 41 b+r=f ¥l auRnoIgns UORIPPY o=I'HNI &l
0=L1:0=F Obi LHIABWNN ANY LNdNIHd *Hd vl z
96 0109 ‘(Hid={LIY 9EL O3 LLINHId NMOO ONITENOAO ANY SHIVd, Hd El
pEL 0LOD 0004 < (Hid 41 SEL LONLLLIMGS * L1 ANV NO SONVLS H31v3a, Hd ZL —
041 OLOD 0=H dI 1l—H=H ¥PEIL ‘pala|duod aie ee s HOVINOVIB SYOINess tid LI 'sajny sAejdsiqg
££1 0109 04 >1 431 :0=(1)D i1+=l EEL spuRY |j8 1EYl 885 O3 HHITYD (E)¥ “(E)W '(0L)d ‘(04)D “(0L)E “(PLIS WIO :SHTD 0L "SOIqRLIB A SUOISULI] .—-
P H O~ - ol gl on o A e "
= 9 = . * s 95 @O e i -~
NEER8ECY ESEcS SEEf°¢LERY EfEEEED 94K 1o mutid e 80 0) giag
g%~ ¢™ oM@ SE"wE_ 8 8'm mmm.m.m.m 5= PEE SR -15QNs PIN0Y “UBaIVS JOIIUOW B SIESD SHTD
SEZ°=28~a §%32 5038 SE528s_ = 3= %4063 ' O "L9LZE O3 | WOl JBquINU B SWINA
o o.._nm-l_. tewcr ﬂmnmm) 2=z m 2.0 = ﬁOHQZI
ol v o g g 8w A we o B 4 o o] e (=
= DB oS s oD e B w ESe>g0F HHEE a
o g S - TS5 - 2 e o [=] £ . 2 0 w = daquinu wopuey
gs . =g o = 238 & . w+eo 2 8m @ o 4 X
2T DO T e M= 58 o =8 g~ 232 9 = 852 g9 siujod Jo |e1o
eufmerV.m.u mm.nﬁ = = o 6numl..mn.m w.m.mhu.. L. o K u
SEe 882832 ¢ SE23s25 ZE2gS 808087 whggai - uondo 0
Bm 3C~"gQ At T g4 B o nouro g SRE IS 1noigns ssuesnsul Joj bej4 4 -—
23880282 R EEE R9CET gEEFsS Bicets e upuely i
o8 o : = S, b = a=@mT 3 a FP8LC3Y g siajun f m
o *E 2B 388 3o 83— -8 .meigm MSB,Te BuE" o028 B0US U 1J8] 5pIED 4O U = L
Be=M8agw CL.EnTRE .mmmnrl. W;D.ﬂmdw SE§EES ooﬁ:__mxuvvwo._”H:Z N <
{9 [o (7] [T v e ,. (31 Huri L : n
gl e.m,..,.m el.u,.m_. W.m..d .memam.ﬂ ER = <= er nnulwmm ﬂﬂxhw}n_abw:oEaunEgoé-w__nn :n_____
- - R = R - I = L R T - Al - B - S S —
%828] 3 EPp*E32 T o8 3H°EER ws ExT.Ea $piedjo soys ()§
FE R, Etée '8 885£8E28=3.8E58 L3L5288 paheid buaq puey Jo spie ()0 =
E—25eSyy, 232873 S SAIEEEUE> 2 85T 48 PUBY YoRa SO} (B30} Sakeld ()
837 2ER9T4 S28fp8: “ifpvssbuici zifiscE poeisorsa oV
w0 oaA=S=8 ORF wES 828 L AB a.l] oo = e @52 2§ spied siaeaq ()W
28385555283 _..wu........ &3 o g spied siaAeld ()Y >
= 1
z| |§ -
P M. B o
fa 3P 28
|| (68 o=
-l
L
il o o o 2 - - m M ES m.
c > 2 - w O 5 B
o 273 & =83 EA g ks £ 25
c o= £ CE = 3 o z o
~ = = - 2 - maw : m -
a| 188 |8 =8c [132[1582[15[]23
S
z 52| las — | [°=] (S 28| |58] |85 |8 |2% @
~ o £
EL g 0T T o s 8| JE=| |2 T 58| (8] |88 -
€88 |8 256| | 85§ s 58 [2] 2
o < g o< 2 8 2asl | & c g
ZEw G Cow = D - c 2 g =]]
£3° a 885% e B LR = =] P
ETH 2 -2 $ a8 e v] 3
o - N o g m W_r o o — e o ° w
E22 & Tea =5 & o 3 s w £ =
{1 @ o - o | - M o O S
a£E ade ae 8o a 8 oE ®
— o8 =l =
(s z @
= z = W
‘m o5 |
a £ = =2
£MeE 3
& [B5 8
2 (5]
(I8 =
| w
-
-9
=]
w
o

46

We're pleased that reader Mach has taken
up the challenges raised by Jacques
Vallee in a recent article. Mr Mach is Sys-
tems Analyst/Technical Manager at the
Detroit Board of Education, and current-
ly finishing requirements for a Master’s
Degree in Computer Science at Wayne
State University,

I read Mr Vallee’s article (Nov-Dec 1977
issue of People’s Computers), ‘There
Ain’t No User Science’, which was billed
as a ‘tongue-in-cheek’ discussion of diffi-
culties on computer nets caused by pro-
grammers and other computer types. The
discussion seemed less ‘tongue-in-cheek’
than a straightforward list of complaints.

Since I am a (gasp) Systems Programmer
on a (booo) IBM machine and have
worked a number of years in the educa-

48 PEOPLE'S COMPUTERS

BY WARNER MACH

tional environment I would like to defend
the BAD GUYS. I would also like to con-
fess that I am also a longtime (BA — Be-
fore Altair) subscriber to People’s Com-
puter Co.[People’s Computers and have
my own KIM (so I am not totally mind-
lessly dedicated to the Intimidating Bad
Machine).

I would like to rebut some of the specific
notions in the article, but even more I
would like to expose a sort of curious at-
titude on the part of certain elements of
the hobbyist/educational fraternity con-
cerning the motives of the establishment
computer people.

MAINTAINING THE POWER

This curious attitude is well expressed by
Mr Vallee and by Ted Nelson (Computer

Lib | Dream Machines). The general no-

tion is based on the following presump-

tions:

1. Computers are basically simple.

2. There is a group of people who are de-
liberately making it difficult for the
Poor Suffering User (hereafter known
as PSU) to use the computer,

This is being done because:

A. The Establishment Priesthood (here-
after known as EP) wants the ego grat-
ification of forcing the users to come
to them for answers.

B. The EP enjoys the power and control
which comes of being the only ones
who know what is going on.

C. The EP is afraid they will lose their

jobs if the masses leam to fare for
themselves.

D. For some reason the EP attracts a par-

ticularly noxious type of person who

enjoys forcing PSU’s to perform un-
natural and inhuman tasks.

Control is maintained by:

A. Inventing secret languages full of
‘Computercrud’ (Nelson) and ‘Obfus-
cation’ (Vallee).

B. Creating artificial barriers to easy
machine access.

C. Imposing ill-fitting systems.

D. Being non-responsive and obstinate
when facing user requests.

FINDING THE VILLAINS

In looking at these charges, we first have
to determine who comprises the PSU’s
and who is the EP. If I am the Systems
Programmer on an [BM machine then am
I really part of the EP because 1 delight in
torturing the students and teachers who
are my PSU’s? Or am 1 really a PSU my-
self since T am under the Ultimate EP:
IBM? How much secret lore do I have to
ingest before I cross the border between
PSU and EP? And how about Mr Vallee
. . . does he not sometimes find himself in
the role of EP as he explains, for exam-
ple, how to put paper in a terminal?

Let's assume for a minute that, in fact, in
the course of a computer-associated ca-
reer that a person will likely find himself
at various times on one side or the other
of the fence. Let’s go even one step fur-
ther and pretend, for the sake of argu-
ment, that computers work pretty much
like everything else in our experience;
other pieces of machinery like, for exam-
ple, cars.

FACING REALITY

1. Reliability is a function of experience.
In the early days of cars if you wanted
to go any distance you anticipated lots
of flat tires and breakdowns (sort of
like system crashes). As more experi-
ence was gained, cars became more re-
liable.

2. Economics determines what is possible.
It is particularly astonishing to me that
much of the villainy ascribed to the EP
is simply a matter of economics. In
addition to the direct economic aspect
(how many programmers are we will-
ing to hire and what kind of resources
are we willing to devote), economics
appears, directly or subtly, in almost
anything that does or does not get
done on a computer.

The other day I saw a PLATO terminal
for the first time ... an incredible ter-
minal with incredible software sup-
port. Of what use is it for me to com-
pare that $6000-$10000 terminal tied
to a $1000-a-month network with my
ADM-3A tied to a $100-a-month
network?

For some reason the same people who
buy a Ford and don’t expect it to act
like a Fiat expect that all software
should be able to do anything . . .
perhaps this is because (a) products of
thought are somehow °‘less real’ than
manufactured items and (b) it is
‘theoretically’ possible for any soft-
ware to emulate any other.

. Programs are made by people.

If you have to ‘list’ your file when you
are not under the editor and you have
to ‘print’ your file when you are under
the editor there are two possible ways
this might have come about:
A. Conspiracy theory:
‘OK folks, how can we confuse the
user and maintain our position in
the'BP. ..”
B. Project management not as tight as
it should be:
Joe Epsidic of the Editor Team talks
to his superior: ‘Hey Pete. . . What
command should I use to type out
the file?’ ‘I don't give a damn. . . Use
“print”. .. When you gonna finish
that routine?”

Larry Ascii, of the File-Control
Team, is simultaneously talking to
the programmer across the desk . . .
‘What you think we should say to
type out the statements?’ ‘How a-
bout “list” . . . it’s easy to remem-
ber.

. Humans are bad prophets and have

access to limited information.

The IBM 360/370 operating systems,
for example, were very large software
projects. In order to accomplish the
task, each programmer (as in any large
programming task) was given a small
portion of the code to work on, along
with information as to the parameters
which would be passed to him and the
parameters which he should pass out
of his program. A programmer work-
ing in such an environment codes
things like error messages in such a
way as to make them meaningful with-
in his portion of a larger project. Not

having a broad overview of the system
as a whole, he has no way of predict-
ing exactly how his coded message will
appear to the end user, and indeed no
precise idea what it will ultimately
come to mean! Under these circum-
stances the best the systems program-
mer can do is to document in detail
the conditions that may cause the
message to appear while avoiding over-
simplifications that may well be mis-
leading.

ANTICIPATING
USER FRUSTRATIONS

But enough of defending the coders of
operating systems. Let’s move on to how
to ‘anticipate’ user frustrations.

According to the article: ‘Never start im-
plementing a system until the end users
have been identified and given easy access
to the designers . . . This is a sort of
motherhood-and-apple-pie statement, but
what does it mean? The implication is
that the EP is in the habit of arbitrarily
designing (or mis-designing) systems
which it then forces down the throats of
the PSU’s. As anyone who has designed a
system knows, one of the very most diffi-
cult things to determine is what the end-
user needs. The reason this is difficult to
determine is not (generally) because the
EP prefers to misdirect its energies as
opposed to meeting the needs of the PSU,
but rather because the user simply
doesn’t know what he needs and what the
computer can and cannot do for him.

‘Aha!’ I hear someone exclaim. ‘Spoken
as a true patronizing member of the EP.
But it’s true, and there is a large amount
of literature devoted to the slippery prob-
lem of how to achieve a reasonable inter-
face between the user and the computer.
It is fair to say that, far from resenting
the intrusion of the user, a systems ana-
lyst of any competence would probably
bathe in oil (warm) the feet of a PSU who
would come to him with an accurate
doeumentation of the system in a form
which could be readily implemented on
the computer (said user presumably
having ironed out all political problems
which, often as not, are the biggest diffi-
culty).

In Vallee’s article he was talking about a
computer net. If this net is to be available
to anyone with the money and inclina

MAY-JUNE 49

tion to sign up for the service (as opposed
to a net initially financed by a specific
group or groups for a specific purpose)
then how are the end users to be identi-
fied in advance of the several-year imple-
mentation effort? . . . Once the service is
" available then the clients will appear. To
ask them to appear in advance is some-
what trickier than trying to talk to the
drivers who will be using a proposed free-
way. It almost sounds as though Mr
Vallee bought into a net after it was al-
ready in operation and was irritated be-
cause he wasn’t consulted in its design!

Another user frustration indicated is ex-
cessive non-comprehensible typing which
is required. 1 am inclined to agree that a
user should only type what is necessary
(does anyone disagree?). The interactive
systems [am familiar with (VM, MTS,
TECHNOTEC) require the user identifi-
cation and password, which is a mini-
mum, I think there are a lot of systems
like this.

I somewhat disagree with the notion of
¢, .. never give him (the PSU) an output
that is outside the task context . .." 1 dis-
agree because in many instances a precise
explanation of the problem is required
for a solution, and a more precise state-
ment for the sake of the EP may be less
understandable to the PSU. The question
is whether the more precise statement is
eventually to the PSU’s benefit.

Generally a conversation with a PSU runs

something like this (on the phone):

PSU: It doesn’t work.

EP: What doesn’t work?

PSU: The computer.

EP: What are you running?

PSU: Not running anything . .. It doesn’t
work.

EP: | mean, were you trying to run
BASIC or send a job to the batch
machine, or what?

PSU: I just dialed this number glued on
the terminal and it doesn’t work . . .

EP: Did you hear a high-pitched tone
when you dialed?

Etc.

Believe me, even though an output may
mean nothing to the user it very frequent-
ly means a whole lot to the EP represen-
tative who, hopefully, is trying to help (it
may very likely be the only scrap of con-
crete information around). There may be,
perhaps, other ways of getting this infor-
mation to the EP than have the PSU con-

50 PEOPLE’'S COMPUTERS

vey it verbally from his terminal printout,
but this is, by far, the easiest and the
quickest. I wonder, too, if a more precise
explanation of a problem may be irritat-
ing to the PSU initially but might be ap-
preciated as he gains more experience
with the system.

Another issue raised by Mr Vallee is the
so-called ‘wide angle fallacy’. I find this
notion rather at variance with the other
things he has said. Evidently his group
arbitrarily and non-democratically decid-
ed to restrict the commands available to
the PSU’s for-their-own-good (I doubt if
they consulted with the PSU’s about this
. . . The usual inclination of PSU’s is to
ask for everything they ever heard of).
Apparently, a determination was made of
the most frequently used commands and
only those pages of the manual were
passed out to the PSU’s . . . He seems to
regard this as a major accomplishment.
Except for, presumably, a little disk space
did it hurt that the additional, unused
commands were available? Is it possible
that more experienced users of the net
did use the additional commands?

Users generally pass through three stages:

1. Need help stage: At this stage many
prompting and ‘help’ facilities should
be available to the user. Commands
should be few and simple.

2. Experienced stage: At this stage the
prompting should be infrequent. The
user should be provided with abbrevi-
ated commands and shortcuts. Special-
ized commands can be introduced.

3. Super whiz: User is familiar with
whole battery of specialized com-
mands. Uses abbreviations for all com-
mon commands. Perhaps provided
with an ‘extensible’ facility that allows
him to tailor his own commands.

The stage reached by a user is determined
by the amount of experience in terms of
the number of hours logged and frequen-
cy of use. Professional users of the net
(who most likely would be catered to —
economics again) would be dissatisfied
with a restricted subset of commands.

THE CASE OF THE
INDIFFERENT EP MANAGER

I was amused by the dialog between a
PSU who wanted to change the message
given to the user during an interrupted
session and the manager of the network
facility. Mr Vallee presents this as though

the EP manager, in the perverse manner
of EP people everywhere, saw it as his
duty to mold the PSU into an unnatural
shape. Since 1 have been on the opposite
side of the table from a PSU from time-
to-time, | know what was going through
the head of the manager:

1. There are X (units, tens, hundreds) of
PSU’s out there in user land, all of
whom have at least one idea of how
the system should be changed. If the
floodgates were opened, with our pre-
sent staff we would be programming
and documenting to the year 3000,

. Any programming change, no matter
how small, endangers the whole net. Is
it worth endangering the net for this
request? (Remember from Mr Vallee’s
survey that system crashes are the
thing that disturbs PSU’s the most. . .)
It doesn’t take long for a programmer
to develop the general philosophy of
‘If it works don’t change it’.

3, It is difficult to predict how long it
will take to make a programming
change (even a simple one). There will
be the expense (economics again) of
the programmers’ salaries, plus docu-
mentation costs, plus documentation
distribution costs,

4, This change may be important to this
user but how ‘visible’ is it? (It may be
better to ask for major enhancements
to the system than minor improve-
ments that can't be used to sell any-
thing. . .) Maybe other users will be
unhappy with the change.

I've got to say that the manager’s PR
technique needs improvement. My tech-
nique is to pull out my ist of things that
need doing’. . . I then say, “That’s a good
idea, but I don’t know how soon we'll get
to it" as 1 add the new entry to the bot-
tom of the list. (This is a real list, by the
way. It is conceivable, though unlikely,
that all entries will eventually be pro-
cessed).

3

Has there ever been a PSU who said, ‘We
think that this change is so important
that we will pay any costs associated with
implementing it and we will not complain
if the system crashes as a consequence of
trying to put it in?’

THE TALE (OR TAIL) OF THE CRASH

Another feature of the article which was
sort of amusing was the account of the
system crash. At first I was a little puz-
zled why the discussion of what trans-

Continued on page 53.

BASIC5 sirings

SWIMMING UNDERWATER

WHAT'S YOUR NAME?? MARVIN GOLDFISH
NICE TO MEET YOUs MARVIN GOLDFISH
DO YOU HAVE ANY HOBBIES?? WHMAT ARE THEY??7?

REALLY!I1 [KNEW A GUY WHO LIKED SWIMMING UNDERWATER
BUT HE WASN'T TOO G0OD AT DOING ANYTHING.
:)l:slio'l’ouk BEST FRIEND? JOHNNY FLOUNDER

HNNY FLOUNDER LIKE SWIMMING UNDERWATER LIKE YO
WELL, MARVIN GOLDFISH IT'S BEEN NICE TALKING TO YOU. 2
I HOPE YOU COME BACK AND TALK WITH ME AGAIN SOMETIME.
BRING YOUR FRIEND, JOHNNY FLOUNDER WITH YOU.

BY FR. THOMAS MCGAHEE

10 GOSUB 30P0@0: REM * CLEAR STRING STORAGE AREA

20 PRINT "HI!
25 PRINT

WHAT'S YOUR NAME?? "1t GOSUB 10009t N=2

30 PRINT "NICE TO MEET YOU, *“5t Z=Nt GOSUB 20800

as PRINT

40 PRINT “DO YOU HAVE ANY HOBBIES?? WHAT ARE THEY?7?*

59 GOSUB 100001 H=Z
55 PRINT

60 PRINT “REALLY!I! I KNEW A GUY WHO LIKED *3t Z=H: GOSUB 20008

65 PRINT

70 PRINT "BUT HE WASN'T TOO GOOD AT DOING ANYTHING."™
88 PRINT "WHO IS YOUR BEST FRIEND? *“»: GOSUB 10PAA: F=Z

85 PRINT

90 PRINT "DOES "p1 Zs=F: GOSUB 200881 PRINT * LIKE "3
95 Z=H1 GOSUB 200080: PRINT " LIKE YOu?"™

188 PRINT "WELLs, "3z Z=N: GOSUB 20000

118 PRINT " IT'S BEEN NICE TALKING TO YOU."™
128 PRINT "I HOPE YOU COME BACK AND TALK WITH ME AGAIN SOMETIME."
138 PRINT "BRING YOUR FRIEND, "5t Z=F: GOSUB 20@0A: PRINT * WITH YOU.*

148 PRINT : END

19083 Z=CALL(16384a>y RETURN

20008 Z=ARG(Z)1 Z=CALL(16442): RETURN
30008 Z=CALL(16438): RETURN

Many SOL 20 owners have suffered along
without string capabilities while waiting
delivery of Processor Tech’s 8K BASIC.
But Father McGahee found time to write
a string handler for BASICS, so as to give
his students capabilities for conversa-
tional-type programs such as the one
illustrated on this page.

Our school recently purchased a SOL 20
from Processor Tech. I assembled it, and
we are now using it in our computer
course here at Don Bosco Tech. We have
the 8K BASIC on order, but while we are
waiting for that we have been happily
programming away using BASICS. One of
the things that BASICS is missing is
strings. Too bad, 'cause strings are lots of
fun to use in programs to provide a more
conversational feedback and ‘personal’
sounding program.

I finally had a few free moments the
other day (I teach electronics and com-
puter programming at Don Bosco, and am
kept fairly busy!!), and I wrote up this
short string-handler which makes use of
the machine language CALL instruction
in BASICS. It is by no means an optimum
implementation, but provides a reason-
able flexibility. 1 will be doing up a more
useful version soon, but in the meantime
I figured maybe the guys and gals at PCC
might be interested in this first version.
I guess there are a lot of SOLs out there
with BASICS, and not all of the users are
capable of doing up their own string
handlers. . . so they might like to try this
one out until something better comes
along.

[assembled my particular version starting
at 4000 hex (16384 decimal). The
assembler used was the ALS-8 from Pro-
cessor Tech. I tried to keep things simple.
To input an ASCII string the user does a
CALL to ASCIN. This routine starts stor-
age at the next available location in the
text storage area, which is pointed to by
LAST. It duplicates this address in BEG
(for BEGINNING) for later use in setting
the BC registers prior to a return to
BASIC. I use the SOLOS input routine at
OCOIF to get keyboard input, then I strip
off the MSB (parity bit) since otherwise
TTYs might give us codes different from
some keyboards. The ASCII is then
stored in memory and the current address
updated to point to the next available
location. At this time (before any
echoing), a check is done to see if the

MAY-JUNE 51

ASCII character was a Line Feed (LF). I
use the line feed as a terminator rather
than Cairiage Return (CR), because this
allows the user to input extremely long
strings, such as entire poems and the
like!! If it was not a LF then the charac-
ter is placed in the B register and echoed
using the SOLOS routine at 0C019. Since
the echo causes the A register to be
changed, but B still has the ASCII code,
we copy B into A so we can perform
comparisons. A CR will result in a CR,
LF, and one NULL being sent out. If the
user has made a mistake, he may type in
a DELETE, which will cause the program
to back up the memory to the proper
place. Input continues uninterrupted
until a Line Feed is finally typed.

When input is done, the present address
(next empty location) is stored in LAST
so the next time ASCIN is used it will start
off at the right place. The ORIGINAL
BEGINNING of the present text stringis

then recovered from BEG and transferred
to the B and C registers, since the BASIC
CALL instruction uses these registers for
transferring data between BASICS and
the machine language routines. Then
there is a RETurn to BASICS. You will
notice that there is a special entry point
labeled INIT. Upon entry here the DONE
portion of ASCIN is used to reset the
address pointers to the beginning of the
text storage area. This entry point can be
used at the beginning of a BASIC pro-
gram to ‘clear’ the string storage area.
(Notice that it does not erase anything. . .
it merely allows us to recycle storage
space to conserve memory.)

The ASCII output routine operates by
taking the address found in the B and C
registers and setting that up as the current
address for memory. (The B and C regis-
ters are loaded with the address prior to
the BASIC CALL using the ARG instruc-
tion. . . see sample program for details).
The program now starts extracting ASCII
characters one at a time and printing
them. A CR will again result in a CR, LF,
and NULL, using the same subroutine
used during input. When a Line Feed is
finally encountered, there is a RETurn to
BASICS. The Line Feed is NOT printed.

52 PEOPLE'S COMPUTERS

4pRB

40808

4909

4pP0

4008

4RAR8

4900

4000 BA S5A 49
4003 22 5C 49
4006 CD IF C@
4009 CA 86 49
4p@C E& TF
400E 17

4P0F 23

4919 FE PA
4912 CA 31 49
4015 47

4@16 CD 19 Ce
4219 78

401 A FE 8D
401C CC 4aE 40
49\F FE 7F
4821 C2 @6 4@
4824 A6 A1
426 CD 19 Cc@
4p29 2B

apea 2B

4028 C3 86 4@
AP2E

AB2E 21 63 42
4n31

4A31 22 SA 4@
4R34 2A S5C a0
4937 a4

4@38 4D

4839 C9

483A

4B3A

aB3A 60

4838 69

483C 7E

aB30 a7

403E FE BA
4pap CB

40a]l CD 19 Co
apaa 23

a@as 18

ap46 FE @D
4p4a8 CC 4aE a0
4948 C3 3C a9
AQAE B6 PA
4858 CD 19 C@
453 Pé @0
455 CD 19 Cce
4958 78

4959 C9

4pSA

4R5A

405A 63 4P
495C 63 40
4A5E P9

4AS5F @89

P60 08

4061 89

4p62 89

4963 08

ASCIN 4390
ASCIO 4@ 3A
BEG 405C
CR AR AE
DONE 4831
INIT 4Q2E
INP 4906
LAST 4054
ouT 4p3c
=T 4P63
49900: 2A SA ap
4818: FE 8A CA
apga: TF C2 06
4p3P: 4@ 22 SA
4@ap: CB CD 19
4858: CD 19 Ce
404P: AP A8 PO

22
31
49
49
ce
26
L1

a1e
@155

ae1e
en20
eeas
AA3e
2935
PO ap
2100
2105
LR
8115
ei12e
aiee
2125
g12s6
8127
2128
@130
2135
a140
2150
anss
2170
8175
a18s
fl98
@192
193
9195
8197
azen
@203
a2es
pz1e
8215
az220
az2s
02217
0230
p23s
w240
Beas
e2s5n
ness
ae6a
A265
az27m
8275
a280
A2B5
n29a
0295
pape
A3as
a3le
p3zeo
aaes
n326
nae?
fA330
2335
8348
B345
/ase
0355
2360
8365

ez10
A2RS

p128

e12a

8175

2185 @25
8290
e200 A330

5C
ap
ne
2A
23
(1]

cD
coD
cD
Ll
FE
19

a7
a1
sSc
78
cp

* MACHINE LANGUAGE ROUTINES Tn ADD STRINGS

« T0 BASICS VIA “CALL'" INSTRUCTIONS.

&« WRITTEN BY FR« THOMAS MCGAHEE

« ELECTRONICS AND COMPUTER INSTRUCTOR
PATERSON, NEW JERSEY #7502

=« DON BOSCO TECH.

*
#=% ASCI! INPUT WITH ECHO«

ASCIN LHLD LAST RECOVER ADDRESS
SHLD BEG STORE FOR LATER USE

INP caLL @CPIFH GET A CHARACTER
JZ INP CHECK STATUS
ANT TFH MASK PARITY RIT
MOV M A STORE IN MEMORY
INX H UPDATE CURRENT ADDRESS
CP1 AAH IF A LINE FEED=++
JZ DONE +++ PREPARE TO RETURN
LAY B:A PUT IT IN B FOR SOLOS...
CALL OCRI9H <+« S50 IT CAN ECHO IT
MoV As B IN “A* FOR COMPARES
CP1 a0H IF A CARRTAGE RETURN: ..
cz CR +»+« THEN DO LF AND NULL
cP1 TFH "DELETE" NEEDS HELP
JNZ INP BACK FOR MORE!
MVI BsBIH +seB HAS BACKSPACE« s«
CALL ACAI9H +++PRINT A& BACKSPACE-..
Dex H DOUBLE DECREMENTss«
DCx H +«+« CLEARS BAD DATA
AMp INP «s»« AND GET MORE!

.

INIT Lx1 Hs TXT =RESET POINTERS

L

DINE SHLD LAST SAVE FOR NEXT TIME
LHLD BEG GET "0ORIGINAL'" ADDRESS..
MoV BsH »+«AND STORE IN B.C
MOV CsL «+«FOR BASICS LINKAGE
RET BYE-BYE!

-

s+ ROUTINE TO OUTPUT STOREDR ASCII STRINGS

ASCIN ™MDV He B TRANSFER ADDRESS +s+
MoV LsC sssIN RBsC T HsL

ouT MDDV AsM GET STORED CHARACTER
MoV BsA STORE IN B FOR NOW
CP1 DAY LF NOT PRINTED
KZ LF MEANS GO MHOME!
CALL ACAI9H PRINT CHARACTER
INX H SET NEW ADDRESS
MOV AsB NEED IT IN “A™
cP1 ADH CR NEEDS HELP
c? CR SN HANDLE IT WiITH CARE
JMP ouTt GO FOR MORE DUTPUT

CR MVI H,MAH WITH A CR YOU GETes.
CALL PCOI®H +esA FREE LINE FEEDs .
LA} BsPPH +««AND A FREE NULL+ss«
CALL PCOIFH ...TO ALLNW CLEAN 1/0
MOy ArB ND TRASHs PLEASE
RET THAT'S ALL» FOLKS!

L]

= STORAGE AREA FOLLOWS

LAST bw AT ST0RAGE

BEG bW TXT STORAGE
NOP FREE LOCATION
NOP FREE LOCATION
NOP FREE LDCATION
NOP FREE LOCATION
NOP FREE LOCATINN

TXT DB POH TEXT STORAGE BEGINS

8195

P33s

IF CO CA Pé 4D E6 TF 77 23

19 CA 78 FE @D CC 4E 48 FE

19 C@ 2B 28 C3 @6 4P 21 &3

44 4D C9 60 69 TE 47 FE 0A

@D CC 4E a@ C3 3C 4p 96 @A

Co 78 C9 63 4@ &3 40 AP AP

The NOPs in the storage area are not
necessary. | had them there to allow for
quick ‘patches’ should the need arise. It
also prevents destruction of the program
should too many DELETES be accident-
ally entered. One of the changes that I am
making in the new version is a check to
make sure the user does not delete
beyond the BEGinning of the current
string being input!!

The BASICS sample program listing
shows one way of implementing strings
using this machine language program and
CALLs. The user must first load this
string handler using SOLOS. What I am
doing at present is have my students
write three short subroutines in BASIC
up at the high end, say at 10000, 20000,
and 30000. These subroutines contain the
necessary CALL and ARG statements to
access the string handler. This way,
instead of trying to remember the
addresses needed for the CALL state-
ments, all the student need remember is

that GOSUB 10000 inputs a string,
GOSUB 20000 extracts a string, and
GOSUB 30000 resets the string storage
area.

I have further chosen to arbitrarily use Z
as the variable name under which all ARG
and CALL transfers take place. This
simplifies writing BASIC programs using
the string handler, since there is only one
variable name to be remembered. For
example, to input a string which is to
store a person’s name, you can simply
say: GOSUB 10000: N=Z. This inputs the
string and stores the address of the string
in variable N. To recover this specific
string, simply: LET Z=N: GOSUB 20000
and the string is printed out!

-
.

One caution: no leading and trailing
spaces are imbedded into the string unless

the user enters them himself. What this
means is that if you do not provide such

< S

spaces yourself inside the BASIC PRINT
statements that may surround the output
strings, you may find that the string is
printed with no intervening spaces, and
that looks messy. If you find this a
bother, then modify the program to add
such spaces automatically. On the other
hand, I use the fact that there are no
spaces to good advantage in a game where
the user puts in a bunch of technical
words, and then the program combines
them in various ways to form some long
technical-looking, mind-bending words.

In any case, the program is simple enough
to be easily expanded. I can’t wait to get
my hands on Processor Tech’s 8K BASIC,
but in the meantime at least I have a
limited string capability to play around
with. Incidentally, I find the string
handler useful for programs other than
BASIC. As with anything, the uses are as
broad as the user’s imagination! So
imagine to your heart’s coritent, and have
fun!

(<4

Continued from page 50,

pired during a system crash. I was puzzled
until I remembered that the basis of the
article was the notion that the EP en-
joyed torturing the PSU. 1t seems that the
EP enjoys this so much that it is willing
to put itself through a great deal of
trouble for such a tasty morsel.

What made this doubly curious is the de-
scription (with a picture yet!) of the
strange garbage that the terminal prints
when the system goes down . . . Here is
the evidence folks! . . . Look what they
do to us!

Mr Vallee is under the impression that we
EP types have a great deal more control
over what the computer does when the
system crashes than I have ever witnessed.
What to me is a disaster akin to a car ac-
cident is, to him, just EP sport. Evidently
the computer should at least have the de-
cency to type out, ‘So sorry, Bit ill here,
Be back presently.” as smoke curls up
from the CPU or the read-write head digs
a furrow through the disk.

SIMPLICITY REFUTED

I think that it is important to point out
that computers are not simple. There is

no conspiracy to make them seem com-
plicated; they are complicated. The con-
spiracy is to make them seem simple to
the terminal user. This illusion holds as
long as everything works OK (just like
your car). As soon as something goes
wrong (the occasions Mr Vallee concen-
trates on) however, the thin veneer goes
out the window and the terminal user
may be dragged helter-skelter into the
underlying reality.

THE AMERICAN WAY

Another notion expressed in the article is
that the people in charge of satisfying the
needs of the PSU are failing in their func-
tion to the extent that they fail to pro-
vide everything that the end user needs.
This rather quaint idea is rooted in the
notion of how American Capitalism is
supposed to work. But is it the way that
it does work or do you have to take your
car to shop x to get the radio fixed, shop
y to get the fender bumped out, shop z to
get the wheels balanced?

It may be profitable to have someone
check on individual terminal users and
keep them supplied or it may be more

profitable to let them fare for themselves
and accept a few dropouts from the net.
If, in fact, people shouldn’t be dealt with
in this manner then the problem should
be addressed to the political and econom-
ic machinery rather than computer pro-
fessionals.

LET’S BE FAIR

I realize that it was Mr Vallee’s intent to
deliberately present a one-sided terminal-
user view of computers, but 1 wonder if,
in moving the article from the original
journal to People’s Computers (which has
a lot of readers whose contact with the
computer is only through a terminal) a
disservice hasn't been done . . . I don’t
know that further ‘evidence’ of EP evil
doings presented to current terminal users
in a simplistic manner serves any purpose.

It seems to me, also, that Mr Vallee’s ar-
rows are misdirected. Most of the things
he complains about have more to do with
economics, hardware failure, human falli-
bility, and theé well-known difficulty of
managing large software systems than
‘programming’, ‘user science’, sadists, or
deliberate attempts at ‘obfuscation’. [

MAY-JUNE 53

18 . “WELCOME TO ‘HUNT THE WUMPUS'™ . P
15 Y¥=11H=8

5 F.J=1T026:F K=1TO3:REQDA(IX VKDY N . K H
13¢ QpATRE.9.8.1,3,18 6

&

) : ! s2i4:12,3.5: 1451, 4.,
18 l'mT_I'-"a,a‘alﬁ-»é-‘il-i“,i,.‘-“,.q-a.]'.}. 18,2,9.11
DATA18.12,19.3,11,13,12,14.20,4.13, 15,5, 14,15

[1&'11?!%1'3:l?-EQ;?;lS,!"uS',\:‘J19.11.13;20-‘:3.!5»19

W= F=W M=y :L=106:F J=1T07 ACL+J)=RND(2E8 >N, J

F.J=1TO2 'F . K=JT0?: IFJ=KT . 330

IF ACL+)d=R(L+KITHENE 4G

HoKiN.JrA=S ACL+80=ACL+1 3:P. P, "ENTRANCE IS 1IN CAVE" ;¢ L+8

: > LEFT
Py EARTHOUAGKE ®%3

YU ARE IM CAVE 47

vou

“- 0 < T FELL INTO &N UNDERGROUND POOL
JEUPFED ARRCWS i
3 HERONS LOST B ARROWNS LEFT
TUNHELS LEAD TO CAVES 7 {6 18
DD SONETHIHRG?_
. |
..--""-'_—--'-‘\

IFRHDC 18234608, 3379

IFEND? 108 <6605 . 5688

P.iF K21TOZF J=28T0C: IFACCAC 181 13 3+K
ONJ-1C 206D, 2P96.,28886,2100,2180

P."1 SMELL A WUMPUSY:G 2119

P."1 FEEL A DRAFT":G.2118

FP."BATS NEARBY“:G.2119

P."1 SEE DAYLIGHTII"

I'H. KiP."YOU AREE IN CAVE":fCL+1)
NTCRNOCB Y2468)« IFC =B)+C 37 ITHENR 440

GUS .2200, 2218, 2220, 2220, 2230, 2240, 2250 G, 2448
P.OUAHAL . (WUMPUS TRACKS! 1" :RET .

P."AHAL . .FOUND AN OLD ARROW, LUCKY YOU":g

WERIL+DT 2118

=@+1RET
P O0pPS, &7 FE HTO AN UNDERGROUHD POOL":G 4506
P."THIS LOOKS LIKE A NICE CAVE: LET'S STO e g ai
f :';&!f.k_inﬂE WITH THAT FLASHLIGHT! | ‘r.vg'-,rTL'P FRE- LihCaMRe)
As you can see ﬁ'OH’I this article, the " i ‘FI*E”:P'{I:{IEEU!;E:J,]L;LH. ::: F.O=1T02:P ACaCigl 223403 1N . G
TRS-80 has plenty of loyal fans as well as o The object of WUMPUS is to descend into a labyrinth of S=110=2/P=3:E=4
a fair share of critics. ¥ i - = € caves to hunt a WUMPUS and return to the surface with ’;.-_;,Lq,l BTN "D SOMETHINGY: O TEOus S e NS4 s
your catch, while coping with the many hazards that IFg=CTHENZSRG o e s IFR=STHENSGED
: befall you during your adven N i i GBS EE RE LR Saat 4 the Y A e alBAE
Many thanks to Clyde Farrell for his st .,-. .'" . S P i 9y adventure. In this version, each ii{r.lngh*;:q::)g:g' 3=A¢ 188))THENRSGE
TRS-80 Wumpus program. The Wumpus i _,.-"._. 3 __-;"‘:._ 2 1. Proceed. . . to a new cave. G.2508
listing and run and the Tic-Tac-Toe game - S i 2. Shoot. .. into a connecting cave, S RE LT MEVHT. . DUKNYC 0. 558
at the right were printed on Radio 3. Count. .. the number of arrows that you have. ’ " R LR F-K=1TO3 1 IFACAC 101 143 +K I=RTHENI13D

N.K:P "WOT POSSIBLE":G 3016

A=R=-1 1 IFA<BTHENA=B: 6. 32208

lE’TI!-i. PRCIDEITHENP . "MISSED" 1 G, 3215
IFRNDC 1B 2T P, "YOU GOT THE WUmPLgY
F."YOU WOUNBDEDR THE WUnPUSY

G0s 4"

Shack’s 3599 TRS-80 screen printer at
the recent Computer Faire in San Jose,
CA. You press a button and whatever is
shown on the video screen is printed
(sideways) on a 4-inch wide strip of leading advertising claims tamish Radio Secondly, 1 ordered my TRS-80 with
aluminum-colored electrostatic paper ata Shack's image and are a disservice fo 4K of RAM but soon decided that 16K
rate of 2200 characters per second. those misled by them. would be more to my liking. I changed

my order (no problem!) and received
The system shown at the Faire still hada Phyllis Cole, Editor my 16K machine at an increased cost

4. Exit. ., from the caves if you are in the exit cave.

- .-,.
A

o
U]

Level | BASIC lets you assign a value to a variable and

| then later use that variable as a numerical input. This is
why you can respond with ‘P’ for Proceed instead of typ-
ing ‘1°, as 'P* was assigned a value of ’1" in line 2475. This
makes the game more enjoyable because you don’t need
to remember what number means what command|

FET YOU LOSE

F=F4+L Ad1a29=0:G, 44006

G296
=@ RET

1FCHC 181 2=AC 18233+ C AL 182 d=A¢ 187))T, 2386 RET
RET il)
Level | BASIC does not support 2-dimensional arrays, but IH."WHERE TO";QIF.K=1T03 IFACAC 1O 33+

Y=RTHENS 1 26
I've ‘simulated’ them using the 1-dimensional array in my

IFE=RC1P2 P "00FS! BUMPED A WUMPUS

- ag

few hardware glitches which caused dots
to be randomly printed on the output; we
‘cleaned up’ the listings to improve
readability.

In perusing the TRS-80 Catalog I noticed
one ad that excessively annoyed me;
unfortunately it’s characteristic of many
Tandy Computer ads. For $1198 you can
buy the 4K ‘Educator’ System, which
is nothing more than the standard
TRS-80 with 4K RAM, Level I BASIC,
video display, recorder and the screen
printer described above. What I object to
is the sentence ‘. . . the “Educator” is
ideally suited for computer-assisted
instruction programs’. As one who has
been writing computer-assisted programs
for 14 years, I can assure you that this is
not the case. Level I BASIC supports
little of what most people associate with
computer-assisted instruction, given its
almost non-existent string handling capa-
bilities and lack of file system. Such mis-

654 PEOPLE’'S COMPUTERS

In response to your call for reports on
the TRS-80, and also due to several
‘negative’ commments in your Jan-
Feb issue, I am motivated to rally to
Radio shack’s defense.

First, in Mr McCarthy’s report, he
mentions a $100 down payment required
for a pig-in-a-poke machine. Perhaps
the Radio Shack dealer he spoke with
was ill-informed, but 1 was told that
because there was not much informa-
tion available on the TRS-80 at the
time (about as much as there was on
PET) a $100 deposit was requested
that would be completely refundable
if 1 was not happy with the product
when it arrived (is this caveat emptor?).

of only $289 (are you listening Commo-
dore?).

I have ‘had my TRS-80 about a month
now and have found that although Level
I Basic appears to be limited at first
glance, it has some ‘hidden’ capabilities
that make it more attractive than a simple
overview might reveal. Still, I am anxious
to see what Level Il can do for us.

Finally, I think it is commendable of
both Radio Shack and Commodore that
they have made the best (least expensive)
contributions yet to providing computers
for the average man. Bravo!! I look
forward to seeing TRS-80 programs
in the pages of People’s Computers and
would be delighted to submit a few
myself. And thanks for yowr many
contributions, long may they continue.

Clyde R Farrell
Walnut Creek, CA

WUMPUS game. | calculate the correct index for the
1-dimensional array by using the second parameter of the
array as a multiplier for the first parameter, and then
adding the second parameter back in. For example, if an
array in a program is dimensioned as A(20,3) and you
were looking for the datacontained in A(J, K), you would
look in A(3*J+K). So Al4, 2) is A(3*4+2) or A(14), in
our single dimension array. This idea is further exempli-
fied in line 70 where our ‘two-dimensional’ array is filled
with the required data.

Line 4210 shows Level | BASIC's method of using
Boolean logic; '+ means ‘OR’, *** means "AND".
A(101) is the cave you are in,
A(102) is where the WUMPUS is hiding.
A(103) and A(104) are caves with bottomless pits.
A(105) and A(106) are caves containing superbats.
A(107) is a blocked cave.
Al108) is the exit cave.

Level | abbreviations used in the listing are:
RET.=RETURN IN.=INPUT N.=NEXT G.=GOTO
GOS.=GOsuB P.=PRINT F.=FOR T.=THEN
Also, spaces have been deleted to conserve memory.

WUMPUS and other programs, including STAR TREK,
are available for LEVEL | users through

Farrell Enterprises

PO Box 4392

Walnut Creek, CA 94596

oo

LR REGR
ad Laf == 5 =

@y oh L SN L LS

W o (000 00 0
Q0 €0 0O &) C0
LR Rt b B
O O O D W

L}

H.RVEFQLOOR(IBIDT. P "HOT POSSIBLE" (G, 400
IFCR=ACIBI N I+CO=AC 184 1F "YYYLL] TEEE

IFR=pC 107 0F . "CAVE ENTRANCE 18 @) UCKED"
IFCRRRC 1B5) 0+ CR=AC1BE) Y "RaP
IFL=nd 1@ P (1T MEARBY"

AC1DL J=R: 6,398
C=RHOC28) TFCD
G0S .59¢0:16 .4 3
IFRNOC 180 24 ?SF | "BEWARE OF IT'S MATE) ®

W=1+P. "HEE HEE HEE THE WUMPUE'L GET

IFRHDC 128)< 75008
P."TS8K TSK TSK

F. “HA HA HA ToU L
P "%+ EARTHOUAKE #3

S908:G_427e
£ GOT yvou~

IFRNDC 183 LT RET

ACLAS I=RNOC 26 3 F _J=2T0p
IFACIBE I=ACL4J0T _ACT
NLoJVEET .

JERMOUIG 2= 15 JRCUNAY4CA=BT . PET
P.'DROPPED ARROMSI1": IF =8P “ALL ARE

A=A=JiP Jr "ARROMS LOST", A "ARROWS LEFTY
RET '
ACLYUD=RHDC 28 3 : TFLARCL+ I 3=AC 181))+{ Al
RET

P."OR IF YOU RETUEN TO THE ENTRANCE
P."0UT OF THE CAVES ‘s V1IFF >8P . "GOOD

W=FX¥1D88/M:P 70
IFF=0F . “BETTER LU
Y=1 'N=8:IN."WOULD
IF 0=YT.CLS:G. 248
EHND

R RATING 18%;u
{ NEXT TINME"

SUPERBAT ¢

=ACTIBI D+ CU=AC 186) 1+ =@ 1a?)

A *s ol 71 GOS 61E@:y,
AC1BE) =RNOC2B) IFCAC 181)=AC 102))+l ¢ LB23=6¢ 187 iT.Seas

BO=RNOC 2B Y6, 5030

(00 LIKE TO TRY AGALIN";D

The January-February issue of your
publication indicates you've had some
bad experiences with the Radio Shack
TRS-80 and solicits users” comments.
Well, here’s mine. I've been enjoying my
TRS-80 for several months, and the
one time I needed it, got excellent service
at the Radio Shack repair center in
Belmont, CA. The current software
is unbelievably primitive compared to the
PET’s, but with the new software
announced this week, that situation will
probably be changed.

As a learning machine I find the TRS-80
excellent. I still haven’t finished writing
all the possible programs and I'm sure I
won't by the time the Level II BASIC
arrives. The book leaves a lot to be
desired. But that can and should be
remedied by someone (you? me?) writing
a better book.

As a start, I am contacting anyone
anywhere who advertises a users’ group
for the TRS-80. I will probably attempt
to start a group soon myself, if my busy
schedule allows the time. And I'll soon
have programs available, with complete
printed instructions and documentation,
at about the same price as Radio Shack.
I can now offer documentation on the
Radio Shack BASIC programs [have.

The neighborhood kids call and almost
literally stand in line for a chance to use
the TRS-80, and I find it a lot easier
to use with its almost standard type-
writer keyboard layout than the PET
with its small keys. My youngest
operator-programmer is only 7, and
smart enough to use the level I BASIC. As
and when I can get a PILOT assembler
or enough BASIC to try the BASIC
PILOT in one of your issues, I'll have
even more of the younger set around,
I'm sure.

All in all, I find my 16K system (with no
heat problems by the way, as the 4K
version has) a very good buy for the
money, a very good chance for the
average "beginner to get into micro-
computers, and a lot of fun. The graphics,
even in the Level II, are not as good as
the PET’s, but I need a usable keyboard
much more than fancy graphics. (Any
truth to the rumor heard today that PET
is no longer being distributed?)

Jeff Lasman
San Mateo, CA

56 PEOPLE'S COMPUTERS

8K PET’s are alive and well and even
available off-the-shelf in some Northern
California stores. Production of 4K
systems has been discontinued, at least
for now.

The file system for the TRS-80 Level
II BASIC is improved over the first
version; it is no longer necessary to
unplug cables to rewind tape. All tape
positioning controls (tape start, stop,
rewind, etc) are under manual control.
Named files can be written and read
from tape without manually positioning
to the beginning of the tape with one
curious exception: when a new tape is
put into the cassette drive, it must be
manually positioned so that no leader
is showing. The Radio Shack salesperson
at the Faire said that Radio Shack was
going to put out a line of leaderless
tapes. This is plainly the wrong fix for
the problem; it gives the poor user the
choice between non-standard tapes or the
manual operation. The right fix is to
redesign the cassette controller so that
it works with unmodified audio cassettes.

The bad news is that the names of the
named files are limited to one character;
the universe of available names is thus
quite small. File read/write status is
indicated by a blinking/stationary
asterisk notation in the upper right
corner of the screen. The single
character file name also appears, but
apparently only while the file is being
written or read. No history of files
previously encountered is preserved
on the screen. This is unnecessarily
cryptic and clumsy regard for human
factors, especially in a machine intended
for naive users.

Dave Caulkins
Los Altos, CA

I have a number of comments about the
TRS-80. These are based on a few weeks
of intensive fiddling around with the
same machine that People’s Computers
used for their review. However, before it
got to me the transformer blew and it
went back to the factory for repairs.

Hardware: The keyboard is fine. It lacks
rollover, but being only a fast hunt &
peck typist I wasn’t really bothered. I
liked having the keyboard separate from
the CRT but I found all the power cords
a nuisance. The CRT was adequate.
I had no ftrouble with the cassette
recorder at all: not a single error in
several dozen LOAD and SAVE's.

System Software: Mediocre. Also rather
slow. As a test, I ran the benchmarks that
Feldman & Rugg used for their Kilobaud
article (issue No 10, Oct '77. pages
20-25) on timing comparisons. The times
were in seconds: 2.5, 18.0, 34.0, 39.0,
45.5, 67.0, 110.0. That puts the TRS-80
with Level I BASIC number 25.5 on their
list. A bad showing for a Z-80 machine.

As with many machines, the advertised
amount of memory is not the usable
amount. The 4K version of the TRS-80
has only 3%K for the user (3583 bytes).
This is good for about 100 lines of BASIC
depending on how much array space
you need, how much you use multiple
lines, and whether you use abbreviations.

Interestingly enough, the BASIC looks
like good old Palo Alto Tiny Basic with
a few bells and whistles. The string
capabilities aren’t worth two cents as
far as I'm concerned. It does allow
point plotting but this feature is as slow
as the rest, if not slower.

Documentation: No real comment here.
For anyone who already knows BASIC
it shouldn’t take more than half an hour
to extract everything you need from the
manual.

In General: 1 wouldn’t recommend the
TRS-80. While it does work and is
reliable, I don’t consider that sufficient.
The system software is mediocre—a
bad mark for a machine intended to be
self-contained. Overall, I could find
nothing exceptional about it. It doesn’t
do anything better than other machines
and it really doesn’t do as much.

Eryk Vershen
Palo Alto, CA

I have owned a TRS-80 for a month and
am convinced the product as a whole is
superior to anything else on the market.
I can think of four reasons right away.
First. Radio Shack is indeed delivering
their TRS-80, as advertised, and is
already following through with a goodly
number of upgrading products. The
company doesn’t demand cash-in-
advance and it doesn’t go seeking
publicity until it is ready to fulfill the
expectations it raises. I care strongly
about this: 1 waited four and a half
months on a Commodore PET order
and received nothing but a defensive
letter from a marketing vice-president.
Radio Shack is actually fulfilling the
promise their competition has made: an
affordable computer mass-produced for
personal use.

Second, the TRS-80 has the most
extensive dealership network of any
microcomputer. The typical Radio Shack
dealer knows little about the product he’s
selling, but he’s courteous and willing to
help in any way he can. He’s available,
and few micro dealers have his resources.

Third, the machine itself works very
reliably in my experience. It's been quite
a capable system from the moment I
plugged it in. Certainly Level 1 BASIC
is not a business language, and I'll get
Level IT ASAP, but its sure got the edge
over machine language and the Tiny
BASIC of last year. With all the hardware
and software products already announced,
I feel very well supported.

Fourth, Radio Shack’s user’s manual
is excellent! It takes a novice owner
step-by-step through a pretty good
first programming course, and does it
gently and pleasantly. All too many
people think of computers as difficult
and intimidating, and this author reveals
the fun and simplicity that is the
essential core of all learning.

So, with reasonable delivery, so many
dealers, a complete and reliable system,
and such a good instruction manual, why
do you people have such long faces?
In my opinion the TRS-80 is no less
than revolutionary!

Mark R Johnson
St Louis, MO O

) BY THE DRAGON

——

The Dragon, sometimes known as Bob
Albrecht, was the founder of this period-
ical way back in 1972. He also edited it
for its first four years until yours truly
took over with Volume 5, Number 3. Bob
has spent the last few years working with
kids, computers, and calculators in
schools. He's gotten very interested lately
in fantasy games, and will continue to
share ideas about them in future issues.
ok o

Phyilis Cole &

So! Last issue you read ‘Epic Computer
Games' by Dennis Allison and Lee Hoevel,
You are hooked—you want to play or
perhaps even write an epic game. In case
you don’t already know where to collect
information on role-playing fantasy
adventure games, here are some info
sources,

TSR Hobbies, Inc.
P.0O. Box 756
Lake Geneva, WI 53147

TSR invented Dungeons and Dragons.
Try one or more of the following.

* DUNGEONS AND DRAGONS. The
basic game—dungeon geomorphs, mon-
sters, treasure, polyhedra dice and the
D & D rule book for levels 1 to 3. $9.95 +
§$1.00 postage and handling.

®* DUNGEONS. A highly-simplified
board game version of D & D for | to 12
players. I've played it with kids, 8 years
old and up. $10.00 + $1.00 postage and
handling.

swords and sorcery, fantasy, and science
fiction gaming. Monthly, $18/year.

® THE DRAGON. TSR’s magazine of [

 DRAGONSMOKE

THE CHAOSIUM
P.0O. Box 6302
Albany, CA 94706

® WHITE BEAR AND RED MOON. A
board game in which you are the ruler of
a legendary army during the battle of
Dragon Pass. $9.95

* ALL THE "WORLD'S MONSTERS,
edited by Jeff Pimper and Steve Perrin. A
compendium of monsters to populate
your fantasy adventure worlds. Two vol-
umes—350 monsters in Volume 1, 250
monsters in Volume 2. $7.95 each.

METAGAMING
Box 15346
Austin, TX 78761

S g
® MELEE. A folio game of man-to-man
combat with archaic weapons. $2.95

® WIZARD. . . the magical combat sys-
tem, a game of magical duels for two or
more players. $3.95

¢ MONSTERS! MONSTERS! A fantasy

game for the bad guys, in which monsters
get equal time. $7.

For more information, find a hobby shop
that specializes in fantasy games. I col-
lected the stuff on this page at:

Outpost Hobbies

224 California Drive

Burlingame, CA 94010
And—watch DRAGONSMOKE for more
Dragon Data. 0

MAY-JUNE 57

BY PHYLLIS COLE

EDUCATIONAL SOFTWARE

Recently I've gotten involved in distrib-
uting software (as a volunteer) for an
increasing number of hours per week.
So I'm looking at potential distributors
who will distribute the materials in
exchange for paying a royalty to the
school that holds the copyright on the
materials. Many would-be distributors of
software for home computers showed up
at the recent Computer Faire in San Jose.
They all had one thing in common:
they realized that the field waspotentially
a lucrative one, but had few ideas about
how to go about exploiting it. Most
potential distributors had some sort of
vague proposition to make, immediately
followed by ‘How does that sound?
What do you suggest?’ Those questions
led me to try to concretize my ideas
about what I, as a freelance author of
software, would like to see offered by
a distributor.

My concerns are biased towards educa-
tional software, in part because that’s
the field in which I expect to be writing,
However, I also believe it is in the area of
educational software that the potential
of personal computers may truly be
realized. By the way, I define education
as broadly as possible —many video games
are educational,

Our educational system is simply not
doing the job that many of us want it
to; more and more parents and students
are finding that the majority of learning
takes place not in the traditional class-
room, but in more informal ways, such
as building electronics kits, parttime jobs,
etc. With this realization has come a
hunger for personalized educational
materials both for the classroom and the
family room. And the image of the home

computer as a potential private tutor
comes to mind.

Possible goals for a distributor of educa-

tional software might include:

* developing the company’s reputation
of having a ‘seal of good educational
software’ on all its products

* providing classroom-tested programs
and classroom-support materials at
reasonable prices

Products would consist of one or more
educational programs available on cassette
tape. Several differing support packages
could be offered—one minimal one,
another for the ‘family room educator’
and a third for typical classroom use. The
programs should cover topics suitable
for students of all ages—adult education
is an area that looks particularly
interesting. Nor should materials for very
young children be ignored; systems with
graphics capabilities can be used to pro-
duce a variety of pre-math and pre-
reading picture-oriented games and
exercises.

Products initially should be developed
for systems whose projected sales are
on the order of 50,000-100,000 systems
per year. Marketing should be directed
at both home and school. Evidence that
owners of home systems are interested
in educational software comes from
results of a recent readership survey for
People’s Computers: about 33% of those
responding to the survey identified them-
selves as educators, but 76% of those
replying expressed a desire foreducational
software.

Already educational publishers are
distributing reading programs based on

cassette tapes supported by workbooks,
etc. Royalty payments are already
established in the field as a way to attract
and reimburse authors, Various companies
are tooling up to mass produce computer
software on cassette tapes, with the
needed quality control.

Pricing should take into account that
reasonably priced programs have the best
chance of not being ripped off. Another
way to avoid the rip-off problem is to
make documentation so useful that the
purchaser is inclined to buy the
reasonably -priced and easily available
product rather than go to the trouble
of reproducing the documentation.

Reasonable royalty payment to authors
of software are essential if high quality
programs are to be produced on an
on-going basis. For thoroughly docu-
mented programs, the standard 10-15%
of retail price traditionally offered as
a royalty by textbook publishers seems
fair.

The key to the future of the home/
school computer rests on the quality
of the software and documentation
that will be produced for the systems.
The hardware problems are being solved
at a pace far exceeding that of software
problems. It remains to be seen whether
quality programs and documentation that
appeal to consumers can be produced
and distributed. The potential is there:
computers can help fill the demands
heard from all segments of society for
better education and re-education for
people of all ages. Authors are beginning
to appear with some very interesting
materials; hopefully the kind of soft-
ware distributors we need will soon
materialize.

A Call for Distributors

58 PEOPLE'S COMPUTERS

Reverend Mokurai Cherlin is a Buddhist
Priest who moonlights as a programmer
Jor his father’s company, APL Business
Consultants, Inc. He has done all his
programming so far on an Amdahl
470 and hopes to get on an IBM 5100
sometime, and on any microcompulter
that has APL as soon as it comes out.
It should be clearly understood by all
that he has no intention of writing any-
thing called Zen and the Art of Computer
Programming

With the recently released FORTRAN [V
compiler and the forthcoming APL
interpreter for micrpcomputers, both
from Microsoft, it can be said (again!)
that real computing power is now, if

BY MOKURAI CHERLIN
not in the hands of the people, at least

available to them. Soon it should be
possible to buy a real full-power com-
puter off the shelf with the capabilities
of the IBM 5100 portable computer and
a price tag under $1500. The 5100,
priced at $9000, has built-in cartridge
1/0, about 100K of memory, and a few
other goodies. The $1500 machine will
provide about the same capabilities
at one-sixth the cost of the 5100.

THIS MEANS YOU

To many of you, news of APL for micros
does not seem exciting or even interesting,
because APL has unfairly gotten the
reputation of being difficodt to under-
stand, usable only by mathematical

wizards, and expensive in terms of
memory and time—and it makes Bob
Albrecht’s teeth rattle. Experience has
shown that these opinions are greatly
exaggerated. The experience of IBM itself
is the clearest case. APL was developed
by mathematician Ken Iverson. When
APL was first implemented in the late
60’s, IBM did not think they would be
able to sell APL to anyone. IBM did
implement APL on their machines for
use in experiments on various aspects
of their operating systems. In order
to get meaningful results, they had to
have a normal user load of real work,
so they let their employees use the APL
system as much as they liked, for every-
thing from one-line calculations to hours
of number crunching.

MAY-JUNE 59

The results amazed IBM and made them
release APL as a program product:
thousands of their programmers switched
over to APL and wouldn’t go back. Even
more amazing, thousands of people who
couldn’t or wouldn’t learn programming
before picked up APL and loved it.
Many of them wrote significant applica-
tions in the first week, even those who had
never done any programming before.

Now one may well ask what can make
a language so attractive that it makes
converts of people who have resisted
IBM’s best efforts to interest them in
programming. What are more than
15,000 people using at IBM that we
don’t have? Why don’t we all know about
this, we who are so eager, perhaps even
desperate, for tools which will let us
bring computers to the masses?

We don’t have it simply because it has
been too expensive for us, with time-
sharing at $20/hour or more. The new
interpreter from Microsoft will go a long
way toward bridging that gap, since it
will run on any 8080 or Z-80 based
system with 24K for the interpreter and
8K-40K to work in. The reason we don't
know about it also results from the
expense incurred by needing a minimum
of 32K of memory.

From the outside, APL can be intimi-
dating; it only reveals its power and
convenience in actual use, as IBM found
out. Just to list the features of APL
would take more room than I have, and
would still not give the real feel of the
language. There is no substitute for
getting on-line and messing around with
it.

USER ORIENTATION

The particular virtue of APL from the
point of view of the frustrated learner
or teacher is the fact that one can get
on the system and play with it, learning
by doing, without having to know any
more than how to sign on and off and
how to load workspaces. A workspace is
like a page in a notebook. Workspaces
can be named and loaded selectively;
some are public, others are private.

There is no known way to make the
system crash; any attempt to go beyond
the limits of the system results in an
error message, and the user can then try
something else. When an error is found
in the middle of a function such that

60 PEOPLE’'S COMPUTERS

execution cannot proceed, the state as
of the last completed statement is saved,
and the location and nature of the error
are printed out. The user can then examine
variables, run diagnostics, rewrite the
function, and either continue from where
he left off, run the program over again
from the beginning, try any other
program, or force an exit from the
suspended program.

Most accounts of APL power concentrate
on the built-in functions and the ability
to do vector, matrix, and higher
dimensional array operations directly
without program loops. For many users
this is the most impressive part of APL
power, and anyone who has had occasion
to invert a matrix will appreciate having
a function that performs this operation
with one symbol, * [&] °. People who have
had to give up a project or not start one
because such a function was lacking
will appreciate it even more.

But this is not all that makes APL
desirable, especially to those with no
interest in mathematical applications.
(I don’t want to minimize the importance
of powerful mathematical functions,
either. Until you have a convenient form
of some tool, you may not know how
much you have always wanted it.) The
value to the non-specialist comes
particularly from the convenience of
knowing immediately how you are doing,
and having understandable help in doing
something about it. The literature of
learning has pointed out in great detail
the importance of immediate feedback,
and every teacher has seen all too often
the ill effects of frustration and delay on
students’ interest and ability to learn.

No one should suppose that APL will
correct all mistakes itself or give them
cleaner white teeth. What it will do, to
a greater extent than other languages,
is let the user get to work. There is no
problem with duplicating variable names
in subroutines, since variables outside
the function can be shielded. It is not
necessary to keep track of numerous
parameters because so much looping is
eliminated; subroutines required in other
languages can frequently be replaced
by primitive APL functions. Much
larger and more complicated problems
can be tackled because APL programs
are commonly one-tenth the length
and complexity of FORTRAN or BASIC
programs for the same amount of
processing (yes! you can write short

readable lines of APL). In short, you
can get on with solving the problem
and spend less time coding and keeping
track of trivia, by letting the computer
take care of much of the drudgery
for you. Computers do all that much
better anyway.

To explain APL in any detail requires a
book. Anyone who is interested in
reading about the language should get
either A Programming Language, by
Kenneth lverson, the original source of
the language and the acronym, or
APL: An Interactive Approach, by
Gilman (IBM) and Rose (Scientific Time
Sharing Corporation —STSC). The latter
is a textbook which guides the learner
through the language on-line, and
can be used off-line since all examples
are illustrated with actual terminal
printouts. Both are available from STSC
and many computer stores.

FEATURES

One of the prominent features of APL
is the variety of input modes: immediate
execution, function definition, evaluated
input and string input. In the immediate
execution mode, whatever is typed is
carried out when you press carriage
return. These examples show some uses
of APL in immediate execution mode.

APL looks quite conventional when
we perform a simple addition:

2+2
4

However 3*2+4 evaluates to 18, since
evaluation is right to left without
precedence. We can perform a decimal
to octal conversion by typing ‘888 T '
followed by the decimal number to be
converted; APL responds with the octal
number.

114

Similarly, we can convert from octal
to decimal. Type 8 L (ie the inverse
of 888 T) then the octal number to
be converted. APL prints 76, the decimal
equivalent in this example.

841 l1l'1l %
VE

Here’s the type of response APL gives
when you try to perform an illegal

R 3

operation—in this case, dividing by 0.
Note that in the fourth line the * A’
indicates the =+ operand is the source of
the problem.
S=0
LOMAIN ERROR
S+0

.

Function definition mode allows functions
to be written for later execution, or
rewritten at any time. The del character,

¥ , is the signal to enter or to leave
function definition mode. Here’s an
example of a one-line function for
octal to decimal conversion.

definition mode {
TR«CONY X
i 1

Ref) X9

leave function
line number) definition mode

Next we try out our function, CONV.
And we find it works—114 octal is 76
decimal.

function
argument

conNv 1 1 4
e

The quad character, [I , allows numeric
and character input and output in the
middle of execution, as shown below.
CONV e[
0:
11 4
il =)
The computer requests data input, and
then executes the remainder of the
line. Quad input is evaluated before
being handed to the functions which
will operate on it; it can therefore be
entered in any legal APL expression:
numbers in any format, function calls,
variable names, and file references among
them.

We can edit CONV and replace the
argument X by a quad. Here’s what
happens when our re-defined CONV
is called.

oM

14

The quad accepts any APL expression as
input, so in the above example, we could

write 100 + 14 as input and get the same
result.

Quote-quad, [0, accepts a character
string in a manner similar to quad but
without evaluating it. Quote-quad
rejects illegal characters with a request
to try again. Quad will accept a character
string with quotes around it as data,
and quote-quad will accept a string
without quotes so that one can simply
type the appropriate word, statement
or what have you without bothering
about format.

Next we demonstrate using more than
one statement on a single line. A diamond,
<>, is used to separate statements
which will be executed in sequence. The
first statement, *X:’ enters X: as a
character string in immediate mode,
which causes the string to be typed out.
The second statement is @ [0 ; the
quote-quad accepts our string input,
and the function ¢ reverses the input
string.

"Xz & @0
b3
OLLEH
HELLO

The structure of the APL system provides
capabilities that must be seen to be
appreciated. There are many powerful
operators and many system functions
which allow for extreme flexibility
in operation. Character data can be
converted to functions and executed,
the character array can be brought in
from any available source; input can be
through quad (numbers or expressions)
or quote-quad characters, files, variables,
and function values. A function can
define another function or edit one
already defined, then convert it to
character form and store it in a file or
use it as a variable. It can turn a stored
function into an active one and call it,
and so on and on.

This is where the real power of APL
resides. A set of functions stored in a file
as character strings or matrices can be
called up and executed in turn under
program control, even though only one
of them may fit in the workspace at a
time. The same effect can be produced
in another way by putting each function
in a different workspace, so that each
workspace can call its own function,
store its results in the filg, and call
the next workspace.

One of the features which makes this pos-
sible is called the latent expression. A
workspace can be stored with any one-
line expression set to execute immediate-
ly as soon as the workspace is loaded. The
latent expression can print instructions
and call the main function in a tutorial
program, so that the user need only know
how to sign on and load the workspace.

There are many features of APL that I
have not mentioned at all, or have only
barely touched on, such as security pro-
visions, output formatting, and the com-
pound operators whose arguments are
primitive APL functions and whose
results are other powerful functions. But
perhaps there will be another opportunity
to write on these and others.

SHORTCOMINGS

By now it should be clear that I am a true
believer. Nevertheless, 1 am aware of
shortcomings in APL. The error diagnos-
tics could be made much more informa-
tive; editing facilities could be expanded;
some improvements in the debugging
facilities could also be made. The chief
difficulty with APL is space. The inter-
preter is large by current micro standards;
a workspace with nothing in it takes up
4K for stacks and tables. The price of
memory is still tumbling down at 30 to
40% a year, and lots of bright and indus-
trious people are busy writing improve-
ments and enhancements for APL all the
time, so relief is in sight in all of these
matters.

GO TOIT

I don’t expect to make believers of all
who read these words. There is no ques-
tion that APL is formidable when first
approached. If I have gotten you interest-
ed, I urge you to find an APL system and
get some experience with it yourself. IBM
is happy to demonstrate the 5100 and
5110 to anyone who looks like a
customer, even if only for cartridges or
paper. STSC is equally eager to show off
its APL*PLUS ® system to anyone who
might be interested in buying time, pro-
grams or books from them. They also
sponsor free courses and workshops for
actual and potential users. See your near-
est big city phone book under ‘data pro-
cessing’ for offices of both. When Micro-
soft’s interpreter gets into the computer
stores there should be no trouble getting
a demonstration and a tryout, So get on
and get hooked! O

MAY-JUNE 61

ANNOUNCEMENTS

16 PORT SERIAL BOARD

Ohio Scientific announces its 16 port serial
1/0 board. This board is available for use
on any Ohio Scientific computer system. It
comes fully assembled as CA10-X where X
specifies number of serial ports on the
board from 2 to 16. The board features
RS232 and high speed synchronous inter-
faces which can be mixed in any combina-
tion. The communications transfer rate of
each serial port is jumper selectable from
75 to 19,200 baud asynchronous or 250
to 599 Kbits in a synchronous mode. Each
port is based on a fully programmable
ACIA which is capable of running both the
asynchronous or fully synchronous. The
interface board is available as a CA10-X
for $200 retail for the first two ports plus
$50 additional for each extra port up to
16. Contact Ohio Scientific Industries,
1333 Chillicothe Rd, Aurora, OH 44202;
(216) 562-3101.

ACACACACACACACACACACACADACAD
FULL ASCIl KEYBOARD

The Model 756 full ASCII Keyboard pro-
vides encoding for all 128 ASCII characters
and confrol functions. The 756’s line of
accessories includes a numeric pad, custom
cables and connectors. The interface allows
user selection of parity, positive or negative
logic data and strobe outputs, alpha lock
operation and both D.C. level and pulse
strobe signals. A latching shift lock key is
included, and all outputs are TTL-DTL-
MOS compatible. The 756 is available in
either kit form or assembled and tested.
Retail price for the Model 756 kit is
$64.95, and assembled and tested for
$75.95. Contact George Risk Industries,
Inc, G.R.I. Plaza, Kimball, Nebraska 69145;
(308) 235-4645.

ADACACAOACAOACACAOACACAOACAD

62 PEOPLE’'S COMPUTERS

PET-488 BUS CONNECTOR

The PICKLES & TROUT PET-488 cable
assembly makes your PET Computer plug
compatible with any IEEE-488 device.
The inexpensive PET Computer can thus
become the controller for a wide variety
of electronic test equipment and computer
peripherals that can talk to the IEEE-488
bus. The cable itself meets all specs for
shielding and cross-talk and is I8 inches
(45m) long. Price is $30. Contact
PICKLES & TROUT, PO Box 1206,
Goleta, CA 93017.

ACACACACACACADAOACAOAOACAOAD
MAILING LIST SOFTWARE

This modular mailing list package sorts on
zip code or title address, merges files or

extracts sub-files, and prints envelopes and
multiple -column labels. The complete soft-

ware is $75 on a single density CP/M disk-
ette, in either Microsoft BASIC or Com-

mercial BASIC. Contact the Center for the

Study of the Future, 4110 N.E. Alameda,
Portland, OR 97212; (503) 282-5835.

ACACADACADACACACACACAOACACAD
MAILING LIST PACKAGE

The Comprehensive Mailing List Package
#ML-1INS enables the user to start and
effectively maintain one or more mailing
lists. Operations include: Add, Delete,
Search, Sort, Auto-Sort, and Sequential
Printout. Features include: user-selec-
table defaults for ease of entry, user-
selectable number of labels across page
for different printers and label sheets, and
user-selectable 3 or 4 line address for each
independent entry. The program set is
written for convenience and ease of use.
Available with complete documentation
and North Star diskette for only $25 PPD.
Delivery is from stock. Documentation
package only is $4.50 PPD, fully refund-
able with order for diskette. A SWTPC
disk version will be available soon. Order
from: Williams Radio and TV, Inc,
Computer Division, 2062 Liberty Street,
PO Box 3314, Jacksonville, Florida,
32206.

FLOPPY FILE SYSTEM

KSAM is a file management system
designed specifically for floppy disk
microcomputer systems. Random storage
and retrieval of records is based on the
contents of a user-defined data field
within the record which is called the key.
The system supports sequential access of
records starting at any point within a file,
random access by partial key and random
access by relative record number. Sequen-
tial and random access commands can be
intermixed freely,

Space is automatically allocated to the
file when records are added, and
reclaimed when records are deleted.
KSAMS80’s buffering techniques make the
average retrieval time for any record sig-
nificantly less than the time required to
perform the same access by track and
sector address. A number of utility pro-
grams are available as part of the
KSAMSO0 package.

KSAMS80 was originally developed under
Zilog’s Z80 0S 2.0 but can be easily im-
plemented in many existing microcom-
puter operating systems. For additional
information or personal demonstration
contact EMS, 3645 Grand Ave, Suite 304,
Oakland, California 94610; (415) 834-
4944,

AQACACADACACATCACAOACACADAOAD

BUSINESS SOFTWARE

This business package includes a General
Ledger package, an Accounts Receivable,
Accounts Payable, and Payroll package, an
Inventory and Manufacturing package, and
a Mailing List package. Features include
the ability to print a variety of checks,
invoices, purchase orders, and mailing
labels. Required equipment includes a line
printer (Okidata 22 preferred), a terminal
(Soroc 1Q 120 preferred), Dual North Star
disk drive system with North Star BASIC
and 32K memory. The $295 package is
available from Aaron Associates, PO Box
1720A, Garden Grove, CA 92640; (714)
539-0735.

ACACACACACACACACACACACADACAD

STAR WARS SIMULATION

The Star Wars program from Objective
Design is a true, real time simulation.
Under player control, ships move in three
dimensions to create a realistic simulation
of actual space flight. Objects increase in
size as the ships approach and diminish as
they pass. Weapons, deflector screens.
and a directional control joystick are
implemented in each ship. True to the
original storyline, ships of the Rebel
forces must pass through Imperial defen-
ses and Tie-fighters to enter a channel on
the Death Star. If they can avoid a crash
into the channel wall and avoid the gun-
sights of pursuing ships, they have a
chance to destroy the Death Star.

The game requires the high density graph-
ics display provided by Objective Design’s
Programmable Character Generator. This
S-100 card can be used with the Proces-
sor Tech VDM or SOL, Polymorphic
Systems VTI, Solid State Music Video
Board, and other video boards using the
Motorola family of 9x7 matrix gener-
ators, and sells for $169.95 kit, and
$215.95 assembled. Written in 14K of
8080 assembly language, the program
code is being offered on Tarbell and
CUTS tape. Game rules and instructions
for assembling the required ship control
boxes are included in the total price of
$7.50. Contact Objective Design, Inc.,
PO Box 20325, Tallahassee, FL 32304;
(904) 224-5545.

APPLE GOES TO SEED

The *Apple Core’ is the new San Francisco
Apple users’ group. To qualify as a mem-
ber of ‘The Apple Core’ you must own or
regularly use an Apple in any memory
configuration. You must also pay dues,
the amount of which is yet to be estab-
lished.

Sorry to make the membership require-
ments so tough, but we gotta keep the
riff-raff out some way (would you want
an Altair to move in next to you?).
Contact Scot Kamins, SF Apple Users’
Group, Box 4816, Main Post Office, San
Francisco, CA 94101,

ACACACACACADACADADACAOACACAD

TRS-80 USERS GROUP

The TRS-80 Users Group of Eastern
Massachusetts expects to be a popular
and useful clearinghouse and generator of
activities concerning effective use of the
TRS-80. It solicits information on all
TRS-80-compatible hardware and soft-
ware, Interested TRS-80 users are invited
to attend meetings, held 7:30 p.m. on the
second Wednesday of each month.
Contact TRS-80 Users Group of Eastern
Mass., ¢/o Miller, 61 Lake Shore Road,
Natick, MA 01760; (617) 653-6136.

ACACACAOADADAOAOACACACACAOAD

JUNE 6-8
ANAHEIM, CA

The 1978 National Computer Conference
will feature a Personal Computing Festival
to take place June 6-8 at the Disneyland
Hotel complex in Anaheim, CA. Both
one-day and three-day registrations will
be available for the Festival. Information
on NCC 78 may be obtained from AFIPS
Headquarters, 210 Summit Ave, Montvale,
NJ 07645 or by calling (201) 391-9810.

ACACACACACAOACACACAOANAOAOAD

JUNE 23-25
DETROIT, Ml

The MACC Computerfest *78 will be held
at the Detroit Plaza Hotel June 23-25,
1978. Conference Chairperson is Jim
Rarus. Write to PO Box 9578 North End
Station, Detroit, MI; (313) 775-5320.

ACACACAOACACACACACADACACACAD

JULY 22-23
ARLINGTON, VA

Several thousand people are expected to
attend Amateur Computing 78, a July 22-
23 microcomputer festival to be held at
the Sheraton National Motor Hotel in
Arlington, VA. This event is being spon-
sored by AMRAD, a technically oriented
club of radio amateurs and computerists
in the Washington, DC Area. For further
information, write AMRAD, Box 682,
McLean, VA 22101.

ACADAOAOA A OCADAMOROM DR OAOADAC

AUG 22-25
BELLAIRE, M1

The International Conference on Parallel
Processing, sponsored by IEEE Computer
Society and Wayne State University, will
be held August 22-25 in Bellaire, Michi-
gan. Contact Professor G.J. Lipouski,
Deptartment of Electrical Engineering,
University of Texas, Austin, TX 78712,

ACACACACACACACACAOAOACAOACAD

OCT 10-12
SAN FRANCISCO, CA

The third USA-Japan Computer Confer-
ence will be held October 10-12, 1978 in
San Francisco. This marks the first time
this gathering is to be held on American
soil. Contact Professor Edward J.
McCluskey, Digital System Laboratory,
Stanford University, Stanford, CA 94305,

MAY-JUNE 63

